論文の概要: MEDFORM: A Foundation Model for Contrastive Learning of CT Imaging and Clinical Numeric Data in Multi-Cancer Analysis
- arxiv url: http://arxiv.org/abs/2501.13277v1
- Date: Wed, 22 Jan 2025 23:56:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:20.424435
- Title: MEDFORM: A Foundation Model for Contrastive Learning of CT Imaging and Clinical Numeric Data in Multi-Cancer Analysis
- Title(参考訳): MEDFORM : マルチチャンネル解析におけるCT画像と臨床数値データのコントラスト学習の基礎モデル
- Authors: Daeun Jung, Jaehyeok Jang, Sooyoung Jang, Yu Rang Park,
- Abstract要約: 我々は,CT画像表現学習を指導するマルチモーダル事前学習戦略であるMEDFORMを提案する。
MEDFORMは、複数のインスタンス学習(MIL)を通してCTスライスを効率的に処理し、二重事前学習戦略を採用する。
肺癌 (141,171スライス), 乳癌 (8,100スライス), 大腸癌 (10,393スライス) の3種類の癌を事前訓練した。
- 参考スコア(独自算出の注目度): 0.562479170374811
- License:
- Abstract: Computed tomography (CT) and clinical numeric data are essential modalities for cancer evaluation, but building large-scale multimodal training datasets for developing medical foundation models remains challenging due to the structural complexity of multi-slice CT data and high cost of expert annotation. In this study, we propose MEDFORM, a multimodal pre-training strategy that guides CT image representation learning using complementary information from clinical data for medical foundation model development. MEDFORM efficiently processes CT slice through multiple instance learning (MIL) and adopts a dual pre-training strategy: first pretraining the CT slice feature extractor using SimCLR-based self-supervised learning, then aligning CT and clinical modalities through cross-modal contrastive learning. Our model was pre-trained on three different cancer types: lung cancer (141,171 slices), breast cancer (8,100 slices), colorectal cancer (10,393 slices). The experimental results demonstrated that this dual pre-training strategy improves cancer classification performance and maintains robust performance in few-shot learning scenarios. Code available at https://github.com/DigitalHealthcareLab/25MultiModalFoundationModel.git
- Abstract(参考訳): CT(Computed tomography)と臨床数値データ(CN)は癌評価に欠かせない要素であるが, マルチスライスCTデータの構造的複雑さと専門家アノテーションのコストが高いため, 大規模マルチモーダルトレーニングデータセットの構築はいまだに困難である。
本研究では,医療基盤モデル開発のための臨床データからの補完情報を用いてCT画像表現学習を指導するマルチモーダル事前学習戦略であるMEDFORMを提案する。
MEDFORMは、複数のインスタンス学習(MIL)を通してCTスライスを効率的に処理し、まず、SimCLRベースの自己教師あり学習を用いてCTスライス特徴抽出器を事前訓練し、その後、クロスモーダルコントラスト学習によりCTと臨床モダリティを整列させるという2つの事前訓練戦略を採用する。
肺癌 (141,171スライス), 乳癌 (8,100スライス), 大腸癌 (10,393スライス) の3種類の癌を事前訓練した。
実験により,この2つの事前学習戦略により,がん分類性能が向上し,数発の学習シナリオにおいて頑健な性能が維持されることが示された。
https://github.com/DigitalHealthcareLab/25MultiModalFoundationModel.gitで公開されている。
関連論文リスト
- CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - A Unified Multi-Phase CT Synthesis and Classification Framework for
Kidney Cancer Diagnosis with Incomplete Data [18.15801599933636]
非完全多相CTを用いた腎癌診断のための統合的枠組みを提案する。
同時に、欠落したCT画像を復元し、完了した画像セットを使用して癌サブタイプを分類する。
提案するフレームワークは,完全な3次元畳み込みニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2023-12-09T11:34:14Z) - MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep
Models for X-ray Images of Multiple Body Parts [63.30352394004674]
MUSCLE(Multi-task Self-super-vised Continual Learning)は、医用画像処理タスクのための、新しい自己教師付き事前学習パイプラインである。
MUSCLEは、複数の身体部分から収集したX線を集約して表現学習を行い、よく設計された連続学習手順を採用する。
肺炎分類,骨格異常分類,肺セグメンテーション,結核(TB)検出など,9つの実世界のX線データセットを用いてMUSCLEを評価する。
論文 参考訳(メタデータ) (2023-10-03T12:19:19Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
本稿では,コンピテンスベースのマルチモーダルカリキュラム学習フレームワーク(CMCL)を提案する。
具体的には、CMCLは放射線学者の学習過程をシミュレートし、段階的にモデルを最適化する。
パブリックIU-XrayとMIMIC-CXRデータセットの実験は、CMCLを既存のモデルに組み込んでパフォーマンスを向上させることができることを示している。
論文 参考訳(メタデータ) (2022-06-24T08:16:01Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Segmentation of Lung Tumor from CT Images using Deep Supervision [0.8733639720576208]
肺がんは世界中のほとんどの国で死因となっている。
本稿では,LOTUSデータセットに2次元離散ウェーブレット変換(DWT)を適用し,肺腫瘍のセグメンテーションにアプローチする。
論文 参考訳(メタデータ) (2021-11-17T17:50:18Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
胸部CTスキャンの小さなデータセットを用いて,大規模な3次元合成CTスキャンボリュームを生成するCT-SGANモデルを提案する。
その結果,CT-SGANは大量の合成データに基づいて結節を事前訓練することにより,肺検出精度を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-10-14T22:20:40Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。