論文の概要: A space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints
- arxiv url: http://arxiv.org/abs/2501.13830v1
- Date: Thu, 23 Jan 2025 16:54:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:43.645962
- Title: A space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints
- Title(参考訳): 直交不変制約を持つ有界ランク行列の最適化のための空間分離フレームワーク
- Authors: Yan Yang, Bin Gao, Ya-xiang Yuan,
- Abstract要約: 有界ランク行列の最適化のための空間分離フレームワークを提案する。
結合制約の接円錐は各制約の接円錐の交叉であることを示す。
改定問題と原問題との等価性を明らかにする。
- 参考スコア(独自算出の注目度): 4.917399520581689
- License:
- Abstract: Imposing additional constraints on low-rank optimization has garnered growing interest. However, the geometry of coupled constraints hampers the well-developed low-rank structure and makes the problem intricate. To this end, we propose a space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints. The ``space-decoupling" is reflected in several ways. We show that the tangent cone of coupled constraints is the intersection of tangent cones of each constraint. Moreover, we decouple the intertwined bounded-rank and orthogonally invariant constraints into two spaces, leading to optimization on a smooth manifold. Implementing Riemannian algorithms on this manifold is painless as long as the geometry of additional constraints is known. In addition, we unveil the equivalence between the reformulated problem and the original problem. Numerical experiments on real-world applications -- spherical data fitting, graph similarity measuring, low-rank SDP, model reduction of Markov processes, reinforcement learning, and deep learning -- validate the superiority of the proposed framework.
- Abstract(参考訳): 低ランクの最適化にさらなる制約を加えることで、関心が高まっている。
しかし、結合制約の幾何学は、十分に発達した低ランク構造を妨げ、問題を複雑にする。
この目的のために、直交不変制約を持つ有界ランク行列の最適化のための空間分離フレームワークを提案する。
空間分離」はいくつかの点で反映される。
結合制約の接円錐は各制約の接円錐の交叉であることを示す。
さらに、双対有界ランクと直交不変制約を2つの空間に分離し、滑らかな多様体上で最適化する。
この多様体にリーマンアルゴリズムを実装することは、追加の制約の幾何学が知られている限り、痛みがない。
また,修正問題と原問題との等価性も明らかにした。
実世界のアプリケーション(球面データフィッティング、グラフ類似度測定、低ランクSDP、マルコフ過程のモデル削減、強化学習、ディープラーニング)に関する数値実験は、提案フレームワークの優位性を検証する。
関連論文リスト
- Joint Metric Space Embedding by Unbalanced OT with Gromov-Wasserstein Marginal Penalization [3.7498611358320733]
異種データセットの教師なしアライメントのための新しい手法を提案する。
本手法は,Gromov-Wasserstein境界化を用いた不均衡最適輸送問題に基づく。
論文 参考訳(メタデータ) (2025-02-11T12:28:47Z) - Structured Regularization for Constrained Optimization on the SPD Manifold [1.1126342180866644]
対称ゲージ関数に基づく構造化正規化器のクラスを導入し、より高速な非制約手法でSPD多様体上の制約付き最適化を解けるようにする。
構造正規化器は望ましい構造(特に凸性や凸の差)を保存または誘導するために選択できることを示す。
論文 参考訳(メタデータ) (2024-10-12T22:11:22Z) - Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints [9.301728976515255]
本稿では,着陸アルゴリズムの実用化と理論的展開について述べる。
まず、この方法はスティーフェル多様体に拡張される。
また、コスト関数が多くの関数の平均である場合の分散還元アルゴリズムについても検討する。
論文 参考訳(メタデータ) (2023-03-29T07:36:54Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
エージェントは、そのコストに対する複数の制約により、期待される累積割引報酬を最大化することを目的としている。
エントロピー正規化ポリシーとベイダの二重化という2つの要素を統合した新しい双対アプローチが提案されている。
提案手法は(線形速度で)大域的最適値に収束することが示されている。
論文 参考訳(メタデータ) (2022-06-03T16:26:38Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
断片的な離散化は既存の離散化問題と矛盾しないことを示す。
この理論を2つの画像のマッチング問題に適用する。
論文 参考訳(メタデータ) (2021-07-13T12:31:06Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
定常点に収束する一般化外空間を提案する。
このアルゴリズムは一般の$p$ノルド空間だけでなく、一般の$p$次元ベクトル空間にも適用される。
論文 参考訳(メタデータ) (2020-10-31T21:35:42Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。