Asymmetrical Latent Representation for Individual Treatment Effect Modeling
- URL: http://arxiv.org/abs/2501.14006v1
- Date: Thu, 23 Jan 2025 14:44:36 GMT
- Title: Asymmetrical Latent Representation for Individual Treatment Effect Modeling
- Authors: Armand Lacombe, Michèle Sebag,
- Abstract summary: Conditional Average Treatment Effect estimation is a crucial challenge for causal modeling in domains such as healthcare, sociology, or advertising.
This paper presents a new CATE estimation approach based on the asymmetrical search for two latent spaces called Asymmetrical Latent Representation for Individual Treatment Effect (ALRITE)
- Score: 2.951007363818389
- License:
- Abstract: Conditional Average Treatment Effect (CATE) estimation, at the heart of counterfactual reasoning, is a crucial challenge for causal modeling both theoretically and applicatively, in domains such as healthcare, sociology, or advertising. Borrowing domain adaptation principles, a popular design maps the sample representation to a latent space that balances control and treated populations while enabling the prediction of the potential outcomes. This paper presents a new CATE estimation approach based on the asymmetrical search for two latent spaces called Asymmetrical Latent Representation for Individual Treatment Effect (ALRITE), where the two latent spaces are respectively intended to optimize the counterfactual prediction accuracy on the control and the treated samples. Under moderate assumptions, ALRITE admits an upper bound on the precision of the estimation of heterogeneous effects (PEHE), and the approach is empirically successfully validated compared to the state-of-the-art
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - Adversarially Balanced Representation for Continuous Treatment Effect
Estimation [6.469020202994118]
In this paper, we consider the more practical and challenging scenario in which the treatment is a continuous variable.
We propose the adversarial counterfactual regression network (ACFR) that adversarially minimizes the representation imbalance in terms of KL divergence.
Our experimental evaluation on semi-synthetic datasets demonstrates the empirical superiority of ACFR over a range of state-of-the-art methods.
arXiv Detail & Related papers (2023-12-17T00:46:16Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Distributionally Robust Causal Inference with Observational Data [4.8986598953553555]
We consider the estimation of average treatment effects in observational studies without the standard assumption of unconfoundedness.
We propose a new framework of robust causal inference under the general observational study setting with the possible existence of unobserved confounders.
arXiv Detail & Related papers (2022-10-15T16:02:33Z) - Heterogeneous Treatment Effect Estimation for Observational Data using
Model-based Forests [0.0]
We propose modifications to model-based forests to address the confounding issue in observational data.
We found that this strategy reduces confounding effects in a simulated study with various outcome distributions.
We demonstrate the practical aspects of HTE estimation for survival and ordinal outcomes by an assessment of the potentially heterogeneous effect of Riluzole on the progress of Amyotrophic Lateral Sclerosis.
arXiv Detail & Related papers (2022-10-06T11:49:39Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
We propose an upper bound for the bias of average treatment estimation under the strong ignorability assumption.
We implement this upper bound as an objective function being minimized by leveraging a novel additive neural network architecture.
The proposed method is illustrated by re-examining the benchmark datasets for causal inference, and it outperforms the state-of-art.
arXiv Detail & Related papers (2022-03-07T07:42:40Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
arXiv Detail & Related papers (2020-12-24T05:19:03Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.