論文の概要: Inverse Evolution Data Augmentation for Neural PDE Solvers
- arxiv url: http://arxiv.org/abs/2501.14604v1
- Date: Fri, 24 Jan 2025 16:20:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:20.528878
- Title: Inverse Evolution Data Augmentation for Neural PDE Solvers
- Title(参考訳): ニューラルPDE解の逆進化データ拡張
- Authors: Chaoyu Liu, Chris Budd, Carola-Bibiane Schönlieb,
- Abstract要約: ニューラルネットワークのトレーニングには、精度と一般化を保証するために、大量のトレーニングデータが必要である。
本稿では,進化方程式上のニューラル演算子を訓練するための新しいデータ拡張法を提案する。
- 参考スコア(独自算出の注目度): 10.111901389604423
- License:
- Abstract: Neural networks have emerged as promising tools for solving partial differential equations (PDEs), particularly through the application of neural operators. Training neural operators typically requires a large amount of training data to ensure accuracy and generalization. In this paper, we propose a novel data augmentation method specifically designed for training neural operators on evolution equations. Our approach utilizes insights from inverse processes of these equations to efficiently generate data from random initialization that are combined with original data. To further enhance the accuracy of the augmented data, we introduce high-order inverse evolution schemes. These schemes consist of only a few explicit computation steps, yet the resulting data pairs can be proven to satisfy the corresponding implicit numerical schemes. In contrast to traditional PDE solvers that require small time steps or implicit schemes to guarantee accuracy, our data augmentation method employs explicit schemes with relatively large time steps, thereby significantly reducing computational costs. Accuracy and efficacy experiments confirm the effectiveness of our approach. Additionally, we validate our approach through experiments with the Fourier Neural Operator and UNet on three common evolution equations that are Burgers' equation, the Allen-Cahn equation and the Navier-Stokes equation. The results demonstrate a significant improvement in the performance and robustness of the Fourier Neural Operator when coupled with our inverse evolution data augmentation method.
- Abstract(参考訳): ニューラルネットワークは偏微分方程式(PDE)を解くための有望なツールとして登場し、特にニューラル演算子の応用によって実現されている。
ニューラルネットワークのトレーニングは通常、精度と一般化を保証するために大量のトレーニングデータを必要とする。
本稿では,進化方程式上のニューラル演算子を訓練するための新しいデータ拡張法を提案する。
提案手法は,これらの方程式の逆過程からの洞察を利用して,元のデータと組み合わせたランダムな初期化から効率的にデータを生成する。
拡張データの精度をさらに高めるために,高次逆進化スキームを導入する。
これらのスキームは、いくつかの明示的な計算ステップで構成されているが、結果として得られるデータペアは、対応する暗黙的な数値スキームを満たすことが証明できる。
従来のPDEソルバとは対照的に,データ拡張法では比較的大きな時間ステップを持つ明示的なスキームを用い,計算コストを大幅に削減する。
精度および有効性実験により,本手法の有効性が確認された。
さらに、バーガーズ方程式、アレン・カーン方程式、ナビエ・ストークス方程式の3つの共通進化方程式について、フーリエニューラル演算子とUNetを用いた実験により、我々のアプローチを検証する。
その結果,Fourier Neural Operatorの性能とロバスト性は,逆進化データ拡張法と組み合わせることで著しく向上した。
関連論文リスト
- Equation discovery framework EPDE: Towards a better equation discovery [50.79602839359522]
進化的最適化に基づく発見フレームワークであるEPDEアルゴリズムを強化する。
提案手法は基本関数や個人差分といった基本構造ブロックを用いて用語を生成する。
我々は,提案アルゴリズムの耐雑音性および全体的な性能を,最先端の方程式探索フレームワークであるSINDyの結果と比較することによって検証する。
論文 参考訳(メタデータ) (2024-12-28T15:58:44Z) - DeepONet as a Multi-Operator Extrapolation Model: Distributed Pretraining with Physics-Informed Fine-Tuning [6.635683993472882]
マルチオペレータ学習を実現するためのファインチューニング手法を提案する。
本手法は,事前学習における各種演算子からのデータを分散学習と組み合わせ,物理インフォームド手法によりゼロショット微調整が可能となる。
論文 参考訳(メタデータ) (2024-11-11T18:58:46Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
本研究では、パラメトリック偏微分方程式(PDE)に対する時間適応演算子学習への機械学習の適用について検討する。
我々の焦点は、PDEパラメータを表す追加入力を処理するために既存の演算子学習方法を拡張することである。
目標は、短期的なソリューションを正確に予測し、堅牢な長期統計を提供する統一的な学習アプローチを作ることだ。
論文 参考訳(メタデータ) (2024-02-14T18:12:42Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
我々は、ニューラル演算子学習が本質的に近似誤差を誘導する直感の上に構築する。
提案手法では,GPUメモリ使用量を最大50%削減し,スループットを58%向上する。
論文 参考訳(メタデータ) (2023-07-27T17:42:06Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Variational operator learning: A unified paradigm marrying training
neural operators and solving partial differential equations [9.148052787201797]
ニューラル演算子を訓練し、変分形式でPDEを解くための統一的な枠組みを提供する新しいパラダイムを提案する。
ラベルなしのトレーニングセットと5ラベルのみのシフトセットにより、VOLは、未ラベルデータの量に関して、そのテストエラーが電力法則で減少して解演算子を学習する。
論文 参考訳(メタデータ) (2023-04-09T13:20:19Z) - Physics-guided Data Augmentation for Learning the Solution Operator of
Linear Differential Equations [2.1850269949775663]
ニューラルネットワークモデルの精度と一般化を改善するために,物理誘導型データ拡張法(PGDA)を提案する。
様々な線形微分方程式におけるPGDAの利点を実証し、PGDAがサンプルの複雑さを向上し、分布シフトに頑健であることを示す。
論文 参考訳(メタデータ) (2022-12-08T06:29:15Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。