論文の概要: DeepONet Augmented by Randomized Neural Networks for Efficient Operator Learning in PDEs
- arxiv url: http://arxiv.org/abs/2503.00317v1
- Date: Sat, 01 Mar 2025 03:05:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:13:22.382870
- Title: DeepONet Augmented by Randomized Neural Networks for Efficient Operator Learning in PDEs
- Title(参考訳): PDEにおける効率的な演算子学習のためのランダム化ニューラルネットワークによるDeepONetの拡張
- Authors: Zhaoxi Jiang, Fei Wang,
- Abstract要約: 精度と効率のバランスをとるために設計されたハイブリッドアーキテクチャであるRaNN-DeepONetsを提案する。
RaNN-DeepONetsは計算コストを桁違いに削減しながら、同等の精度を達成する。
これらの結果は、PDEシステムにおける演算子学習の効率的な代替手段としてのRaNN-DeepONetsの可能性を強調している。
- 参考スコア(独自算出の注目度): 5.84093922354671
- License:
- Abstract: Deep operator networks (DeepONets) represent a powerful class of data-driven methods for operator learning, demonstrating strong approximation capabilities for a wide range of linear and nonlinear operators. They have shown promising performance in learning operators that govern partial differential equations (PDEs), including diffusion-reaction systems and Burgers' equations. However, the accuracy of DeepONets is often constrained by computational limitations and optimization challenges inherent in training deep neural networks. Furthermore, the computational cost associated with training these networks is typically very high. To address these challenges, we leverage randomized neural networks (RaNNs), in which the parameters of the hidden layers remain fixed following random initialization. RaNNs compute the output layer parameters using the least-squares method, significantly reducing training time and mitigating optimization errors. In this work, we integrate DeepONets with RaNNs to propose RaNN-DeepONets, a hybrid architecture designed to balance accuracy and efficiency. Furthermore, to mitigate the need for extensive data preparation, we introduce the concept of physics-informed RaNN-DeepONets. Instead of relying on data generated through other time-consuming numerical methods, we incorporate PDE information directly into the training process. We evaluate the proposed model on three benchmark PDE problems: diffusion-reaction dynamics, Burgers' equation, and the Darcy flow problem. Through these tests, we assess its ability to learn nonlinear operators with varying input types. When compared to the standard DeepONet framework, RaNN-DeepONets achieves comparable accuracy while reducing computational costs by orders of magnitude. These results highlight the potential of RaNN-DeepONets as an efficient alternative for operator learning in PDE-based systems.
- Abstract(参考訳): ディープ・オペレーター・ネットワーク (Deep operator network, DeepONets) は、演算子学習のための強力なデータ駆動手法のクラスであり、幅広い線形および非線形演算子に対して強い近似能力を示す。
彼らは、拡散反応系やバーガースの方程式を含む偏微分方程式(PDE)を管理する学習作用素において、有望な性能を示した。
しかし、DeepONetsの精度は、ディープニューラルネットワークのトレーニングに固有の計算制限と最適化の課題によって制約されることが多い。
さらに、これらのネットワークのトレーニングに伴う計算コストは非常に高い。
これらの課題に対処するために、ランダム化ニューラルネットワーク(RaNN)を活用し、ランダム初期化後の隠れ層のパラメータを固定する。
RaNNは最小二乗法を用いて出力層パラメータを計算し、トレーニング時間を大幅に短縮し、最適化エラーを軽減する。
本研究では,RaNNとDeepONetsを統合し,精度と効率の両立を目的としたハイブリッドアーキテクチャであるRaNN-DeepONetsを提案する。
さらに, 広範なデータ準備の必要性を軽減するため, 物理インフォームドRaNN-DeepONetsの概念を導入する。
他の時間的数値手法で生成されたデータに頼る代わりに、PDE情報をトレーニングプロセスに直接組み込む。
本稿では,拡散反応力学,バーガーズ方程式,ダーシー流問題という3つのベンチマークPDE問題に対して提案したモデルを評価する。
これらのテストを通じて、様々な入力型を持つ非線形演算子を学習する能力を評価する。
標準のDeepONetフレームワークと比較して、RaNN-DeepONetsは計算コストを桁違いに削減しながら、同等の精度を実現している。
これらの結果は、PDEベースのシステムにおける演算子学習の効率的な代替手段としてのRaNN-DeepONetsの可能性を強調している。
関連論文リスト
- RandONet: Shallow-Networks with Random Projections for learning linear and nonlinear operators [0.0]
ランダムプロジェクションに基づく演算子ネットワーク(RandONets)を提案する。
ランダムネット(RandONets)は、線形および非線形作用素を学習するランダムプロジェクションを持つ浅いネットワークである。
このタスクにおいて、RandONetsは数値近似の精度と計算コストの両面で、バニラ"DeepOnetsよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-08T13:20:48Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Learning in latent spaces improves the predictive accuracy of deep
neural operators [0.0]
L-DeepONetは標準のDeepONetの拡張であり、高次元PDE入力の潜在表現と適切なオートエンコーダで識別される出力関数を利用する。
L-DeepONetは時間依存PDEの精度と計算効率の両面で標準手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-15T17:13:09Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Reliable extrapolation of deep neural operators informed by physics or
sparse observations [2.887258133992338]
ディープニューラルネットワークは、ディープニューラルネットワークを介して無限次元関数空間間の非線形マッピングを学習することができる。
DeepONetsは科学と工学の新しいシミュレーションパラダイムを提供する。
本稿では,外挿下での安全な予測を保証する5つの信頼性学習手法を提案する。
論文 参考訳(メタデータ) (2022-12-13T03:02:46Z) - DOSnet as a Non-Black-Box PDE Solver: When Deep Learning Meets Operator
Splitting [12.655884541938656]
我々はDeep Operator-Splitting Network (DOSnet) と名付けた学習型PDEソルバを開発した。
DOSnetは物理規則から構築され、基礎となるダイナミクスを管理する演算子は学習可能なパラメータを含む。
我々は、演算子分解可能な微分方程式のいくつかのタイプでそれを訓練し、検証する。
論文 参考訳(メタデータ) (2022-12-11T18:23:56Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Improved architectures and training algorithms for deep operator
networks [0.0]
演算子学習技術は無限次元バナッハ空間間の写像を学習するための強力なツールとして登場した。
我々は,ニューラルタンジェントカーネル(NTK)理論のレンズを用いて,ディープオペレータネットワーク(DeepONets)のトレーニングダイナミクスを解析した。
論文 参考訳(メタデータ) (2021-10-04T18:34:41Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。