From Critique to Clarity: A Pathway to Faithful and Personalized Code Explanations with Large Language Models
- URL: http://arxiv.org/abs/2501.14731v1
- Date: Sun, 08 Dec 2024 09:02:04 GMT
- Title: From Critique to Clarity: A Pathway to Faithful and Personalized Code Explanations with Large Language Models
- Authors: Zexing Xu, Zhuang Luo, Yichuan Li, Kyumin Lee, S. Rasoul Etesami,
- Abstract summary: This paper presents an innovative approach to generate faithful and personalized code explanations.<n>Our methodology integrates prompt enhancement, self-consuming mechanisms, personalized content customization, and interaction with external tools.<n>Our findings suggest that this approach significantly improves the quality and relevance of code explanations.
- Score: 3.5176327869934747
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the realm of software development, providing accurate and personalized code explanations is crucial for both technical professionals and business stakeholders. Technical professionals benefit from enhanced understanding and improved problem-solving skills, while business stakeholders gain insights into project alignments and transparency. Despite the potential, generating such explanations is often time-consuming and challenging. This paper presents an innovative approach that leverages the advanced capabilities of large language models (LLMs) to generate faithful and personalized code explanations. Our methodology integrates prompt enhancement, self-correction mechanisms, personalized content customization, and interaction with external tools, facilitated by collaboration among multiple LLM agents. We evaluate our approach using both automatic and human assessments, demonstrating that our method not only produces accurate explanations but also tailors them to individual user preferences. Our findings suggest that this approach significantly improves the quality and relevance of code explanations, offering a valuable tool for developers and stakeholders alike.
Related papers
- Conversational AI as a Coding Assistant: Understanding Programmers' Interactions with and Expectations from Large Language Models for Coding [5.064404027153094]
Conversational AI interfaces powered by large language models (LLMs) are increasingly used as coding assistants.
This study investigates programmers' usage patterns, perceptions, and interaction strategies when engaging with LLM-driven coding assistants.
arXiv Detail & Related papers (2025-03-14T15:06:07Z) - EXALT: EXplainable ALgorithmic Tools for Optimization Problems [2.1184929769291294]
This project proposes a novel approach to developing explainable algorithms by starting with optimization problems.<n>The developed software library enriches basic algorithms with human-understandable explanations through four key methodologies.
arXiv Detail & Related papers (2025-02-28T10:28:20Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
Large language models (LLMs) are now accessible to anyone with a computer, a web browser, and an internet connection via browser-based interfaces.
This paper examines the affordances of interactive feedback features in ChatGPT's interface, analysing how they shape user input and participation in iteration.
arXiv Detail & Related papers (2024-08-27T13:50:37Z) - What You Need is What You Get: Theory of Mind for an LLM-Based Code Understanding Assistant [0.0]
A growing number of tools have used Large Language Models (LLMs) to support developers' code understanding.
In this study, we designed an LLM-based conversational assistant that provides a personalized interaction based on inferred user mental state.
Our results provide insights for researchers and tool builders who want to create or improve LLM-based conversational assistants to support novices in code understanding.
arXiv Detail & Related papers (2024-08-08T14:08:15Z) - Translating Expert Intuition into Quantifiable Features: Encode Investigator Domain Knowledge via LLM for Enhanced Predictive Analytics [2.330270848695646]
This paper explores the potential of Large Language Models to bridge the gap by systematically converting investigator-derived insights into quantifiable, actionable features.
We present a framework that leverages LLMs' natural language understanding capabilities to encode these red flags into a structured feature set that can be readily integrated into existing predictive models.
The results indicate significant improvements in risk assessment and decision-making accuracy, highlighting the value of blending human experiential knowledge with advanced machine learning techniques.
arXiv Detail & Related papers (2024-05-11T13:23:43Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework synergizes open-world knowledge with collaborative knowledge.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - Supporting Experts with a Multimodal Machine-Learning-Based Tool for
Human Behavior Analysis of Conversational Videos [40.30407535831779]
We developed Providence, a visual-programming-based tool based on design considerations derived from a formative study with experts.
It enables experts to combine various machine learning algorithms to capture human behavioral cues without writing code.
Our study showed its preferable usability and satisfactory output with less cognitive load imposed in accomplishing scene search tasks of conversations.
arXiv Detail & Related papers (2024-02-17T00:27:04Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Helpful, Misleading or Confusing: How Humans Perceive Fundamental
Building Blocks of Artificial Intelligence Explanations [11.667611038005552]
We take a step back from sophisticated predictive algorithms and look into explainability of simple decision-making models.
We aim to assess how people perceive comprehensibility of their different representations.
This allows us to capture how diverse stakeholders judge intelligibility of fundamental concepts that more elaborate artificial intelligence explanations are built from.
arXiv Detail & Related papers (2023-03-02T03:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.