論文の概要: Green AI: Which Programming Language Consumes the Most?
- arxiv url: http://arxiv.org/abs/2501.14776v1
- Date: Tue, 31 Dec 2024 13:53:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-02 09:19:36.685416
- Title: Green AI: Which Programming Language Consumes the Most?
- Title(参考訳): グリーンAI:どのプログラミング言語が最も使われるか?
- Authors: Niccolò Marini, Leonardo Pampaloni, Filippo Di Martino, Roberto Verdecchia, Enrico Vicario,
- Abstract要約: 本研究の目的は,プログラミング言語がAI環境の持続可能性に与える影響を理解することである。
我々は5つのプログラミング言語(C++、Java、Python、R)と7つのAIアルゴリズム(KNN、SVC、AdaBoost、決定木、ロジスティック回帰、ナイーブ、ランダムフォレスト)を考える。
収集した結果は,プログラミング言語がAI環境の持続可能性にかなりの影響を与えていることを示している。
- 参考スコア(独自算出の注目度): 2.427365519199075
- License:
- Abstract: AI is demanding an evergrowing portion of environmental resources. Despite their potential impact on AI environmental sustainability, the role that programming languages play in AI (in)efficiency is to date still unknown. With this study, we aim to understand the impact that programming languages can have on AI environmental sustainability. To achieve our goal, we conduct a controlled empirical experiment by considering five programming languages (C++, Java, Python, MATLAB, and R), seven AI algorithms (KNN, SVC, AdaBoost, decision tree, logistic regression, naive bayses, and random forest), three popular datasets, and the training and inference phases. The collected results show that programming languages have a considerable impact on AI environmental sustainability. Compiled and semi-compiled languages (C++, Java) consistently consume less than interpreted languages (Python, MATLAB, R), which require up to 54x more energy. Some languages are cumulatively more efficient in training, while others in inference. Which programming language consumes the most highly depends on the algorithm considered. Ultimately, algorithm implementation might be the most determining factor in Green AI, regardless of the language used. As conclusion, while making AI more environmentally sustainable is paramount, a trade-off between energy efficiency and implementation ease should always be considered. Green AI can be achieved without the need of completely disrupting the development practices and technologies currently in place.
- Abstract(参考訳): AIは環境資源の継続的な増加を要求している。
AI環境の持続可能性に潜在的な影響があるにもかかわらず、プログラミング言語がAIで(効率において)果たす役割は未だに不明である。
本研究では,プログラミング言語がAI環境の持続可能性に与える影響を理解することを目的とする。
目的を達成するために,5つのプログラミング言語(C++,Java,Python,MATLAB,R),7つのAIアルゴリズム(KNN,SVC,AdaBoost,決定木,ロジスティック回帰,ナイーブベイズ,ランダムフォレスト),3つの一般的なデータセット,トレーニングと推論フェーズを考慮し,制御された実証実験を行った。
収集した結果は,プログラミング言語がAI環境の持続可能性にかなりの影響を与えていることを示している。
コンパイルおよび半コンパイル言語(C++、Java)は、最大54倍のエネルギを必要とするインタプリタ言語(Python、MATLAB、R)よりも一貫して消費される。
一部の言語は訓練において累積的に効率的であり、他の言語は推論において効率的である。
どのプログラミング言語が最も消費するかは、考慮されたアルゴリズムに依存する。
最終的に、アルゴリズムの実装は、使用する言語に関係なく、グリーンAIで最も決定的な要素であるかもしれない。
結論として、AIをより環境的に持続可能なものにすることが最重要である一方で、エネルギー効率と実装の容易性とのトレードオフが常に考慮されるべきである。
グリーンAIは、現在実施されている開発プラクティスや技術を完全に破壊する必要がない。
関連論文リスト
- Programming with AI: Evaluating ChatGPT, Gemini, AlphaCode, and GitHub Copilot for Programmers [0.0]
本稿では、ChatGPT、Gemini(Bard AI)、AlphaCode、GitHub Copilotなど、主要なプログラミングアシスタントの徹底的な評価を行う。
AIモデルの潜在能力を具現化する倫理的開発プラクティスの必要性を強調している。
論文 参考訳(メタデータ) (2024-11-14T06:40:55Z) - Intelligent Green Efficiency for Intrusion Detection [0.0]
本稿では,AIの性能向上のための異なるプログラミング言語と特徴選択(FS)手法の評価を行う。
実験はRandom Forest、XGBoost、LightGBM、Multi-Layer Perceptron、Long Short-Term Memoryの5つのMLモデルを用いて行われた。
その結果、FSは検出精度を損なうことなくAIモデルの計算効率を向上させる重要な役割を担っていることが示された。
論文 参考訳(メタデータ) (2024-11-11T15:01:55Z) - Generative AI, Pragmatics, and Authenticity in Second Language Learning [0.0]
生成的AI(Artificial Intelligence)を言語学習と教育に統合する上で、明らかなメリットがある。
しかし、AIシステムが人間の言語に耐える方法のため、人間と同じ社会的認識を持つ言語を使えるような、生きた経験が欠けている。
言語や文化のバイアスは、そのトレーニングデータに基づいて構築されており、主に英語であり、主に西洋の情報源から来ている。
論文 参考訳(メタデータ) (2024-10-18T11:58:03Z) - Distributed agency in second language learning and teaching through generative AI [0.0]
ChatGPTは、テキストまたは音声形式のチャットを通じて非公式な第二言語プラクティスを提供することができる。
インストラクタはAIを使って、さまざまなメディアで学習と評価材料を構築することができる。
論文 参考訳(メタデータ) (2024-03-29T14:55:40Z) - Scaling Instructable Agents Across Many Simulated Worlds [70.97268311053328]
私たちのゴールは、シミュレーションされた3D環境で人間ができることを何でも達成できるエージェントを開発することです。
我々のアプローチは、最小限の仮定を示唆しながら、言語駆動の一般性に焦点を当てている。
我々のエージェントは、汎用的なヒューマンライクなインタフェースを使って、リアルタイムで環境と対話する。
論文 参考訳(メタデータ) (2024-03-13T17:50:32Z) - Exploring the Effect of Multiple Natural Languages on Code Suggestion
Using GitHub Copilot [46.822148186169144]
GitHub Copilotは、プログラム合成を自動化するAI対応ツールである。
最近の研究では、様々なプログラミングタスクにおけるCopilotの能力について広く研究されている。
しかし、異なる自然言語がコード提案に与える影響についてはほとんど分かっていない。
論文 参考訳(メタデータ) (2024-02-02T14:30:02Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Will Code Remain a Relevant User Interface for End-User Programming with
Generative AI Models? [20.275891144535258]
我々は、ジェネレーティブAIを持つ世界で「伝統的な」プログラミング言語が、非専門家のエンドユーザープログラマにどのような意味を持つのかを探求する。
従来型プログラミング言語がエンドユーザプログラマにとって,いまだに意味があり有用である,いくつかの理由を概説する。
論文 参考訳(メタデータ) (2023-11-01T09:20:21Z) - GlobalBench: A Benchmark for Global Progress in Natural Language
Processing [114.24519009839142]
GlobalBenchは、すべての言語におけるすべてのNLPデータセットの進捗を追跡することを目的としている。
話者当たりのユーティリティと、全言語にわたるテクノロジのエクイティをトラックする。
現在、GlobalBenchは190言語で966のデータセットをカバーしており、62言語にまたがる1,128のシステムサブミッションを持っている。
論文 参考訳(メタデータ) (2023-05-24T04:36:32Z) - Understanding Natural Language Understanding Systems. A Critical
Analysis [91.81211519327161]
自然言語理解システム(Natural Language Understanding (NLU) system)としても知られる usguillemotright(英語版) のようなギユモトレフトークを持つ機械の開発は、人工知能の聖杯(英語版) (AI) である。
しかし、Gillemottalking machineguillemotrightを構築することができるという信頼は、次世代のNLUシステムによってもたらされたものよりも強かった。
私たちは新しい時代の夜明けに、ついに砂利が我々に近づいたのか?
論文 参考訳(メタデータ) (2023-03-01T08:32:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。