論文の概要: Advancing Trustworthy AI for Sustainable Development: Recommendations for Standardising AI Incident Reporting
- arxiv url: http://arxiv.org/abs/2501.14778v1
- Date: Wed, 01 Jan 2025 17:34:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-02 09:19:35.952835
- Title: Advancing Trustworthy AI for Sustainable Development: Recommendations for Standardising AI Incident Reporting
- Title(参考訳): 持続可能な開発のための信頼できるAIの推進:AIインシデントレポートの標準化への勧告
- Authors: Avinash Agarwal, Manisha J Nene,
- Abstract要約: AI技術の利用の増加は、AIインシデントの増加、リスクの引き起こし、個人、組織、社会に害を与えている。
本研究では,このようなインシデントデータを確実かつ包括的に収集する標準プロトコルの欠如を認識し,対処する。
このギャップに対処するための標準化努力を強化するため、9つの実行可能な推奨事項を提案する。
- 参考スコア(独自算出の注目度): 2.209921757303168
- License:
- Abstract: The increasing use of AI technologies has led to increasing AI incidents, posing risks and causing harm to individuals, organizations, and society. This study recognizes and addresses the lack of standardized protocols for reliably and comprehensively gathering such incident data crucial for preventing future incidents and developing mitigating strategies. Specifically, this study analyses existing open-access AI-incident databases through a systematic methodology and identifies nine gaps in current AI incident reporting practices. Further, it proposes nine actionable recommendations to enhance standardization efforts to address these gaps. Ensuring the trustworthiness of enabling technologies such as AI is necessary for sustainable digital transformation. Our research promotes the development of standards to prevent future AI incidents and promote trustworthy AI, thus facilitating achieving the UN sustainable development goals. Through international cooperation, stakeholders can unlock the transformative potential of AI, enabling a sustainable and inclusive future for all.
- Abstract(参考訳): AI技術の利用の増加は、AIインシデントの増加、リスクの引き起こし、個人、組織、社会に害を与えている。
本研究は,このような事故データを確実にかつ包括的に収集するための標準化されたプロトコルの欠如を認識・解決し,今後の事態の防止と緩和戦略の開発に不可欠である。
具体的には,既存のオープンアクセス型AIインシデントデータベースを系統的手法を用いて分析し,現在のAIインシデントレポートプラクティスにおける9つのギャップを識別する。
さらに、これらのギャップに対処するための標準化努力を強化するために、9つの実行可能なレコメンデーションを提案する。
持続可能なデジタルトランスフォーメーションには、AIのような技術の実現の信頼性を確保することが不可欠である。
我々の研究は、将来のAIインシデントを予防し、信頼できるAIを促進するための標準の開発を促進し、国連の持続可能な開発目標を達成することを促進する。
国際協力を通じて、利害関係者はAIの変革的なポテンシャルを解き放ち、持続的で包括的な未来をすべての人々に提供することができる。
関連論文リスト
- Securing the AI Frontier: Urgent Ethical and Regulatory Imperatives for AI-Driven Cybersecurity [0.0]
本稿では,サイバーセキュリティにおける人工知能の統合によって引き起こされる倫理的・規制上の課題について批判的に考察する。
我々は、1940年代の理論的議論から、欧州連合のAI法のような最近のグローバルなフレームワークの実装に至るまで、AI規制の歴史的発展を辿った。
バイアス、透明性、説明責任、プライバシ、人間の監視といった倫理的な懸念は、AI駆動のサイバーセキュリティシステムに影響を及ぼすとともに、深く調査されている。
論文 参考訳(メタデータ) (2025-01-15T18:17:37Z) - Standardization Trends on Safety and Trustworthiness Technology for Advanced AI [0.0]
大規模言語モデルと基礎モデルに基づく最近のAI技術は、人工知能に近づいたり、超えたりしている。
これらの進歩は、高度なAIの安全性と信頼性に関する懸念を引き起こしている。
AIの安全性と信頼性を確保するため、国際的に合意された標準を開発するための努力が実施されている。
論文 参考訳(メタデータ) (2024-10-29T15:50:24Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - Security Risks Concerns of Generative AI in the IoT [9.35121449708677]
モノのインターネット(IoT)が、生成的人工知能(AI)とますます交差する時代において、この記事では、この統合に固有の突発的なセキュリティリスクを精査する。
我々は、生成AIがIoTのイノベーションを促進する方法について検討し、生成AIを使用する際のデータ漏洩の可能性と、生成AI技術のIoTエコシステムにおける誤用を分析します。
論文 参考訳(メタデータ) (2024-03-29T20:28:30Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Taking control: Policies to address extinction risks from AI [0.0]
AI企業からの自発的なコミットメントは不適切で不十分な反応である、と私たちは主張する。
先進的なAIの脅威に有意義に対処する3つの政策提案について述べる。
論文 参考訳(メタデータ) (2023-10-31T15:53:14Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - International Institutions for Advanced AI [47.449762587672986]
国際機関は、高度なAIシステムが人類に利益をもたらすための重要な役割を担っているかもしれない。
本稿では,これらの課題に対処するために,国際レベルで実施可能な一連のガバナンス機能について述べる。
これらの機能を4つの組織モデルに分類し、内部のシナジーを示し、既存の組織で先例を持つ。
論文 参考訳(メタデータ) (2023-07-10T16:55:55Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。