論文の概要: Improving reliability of uncertainty-aware gaze estimation with probability calibration
- arxiv url: http://arxiv.org/abs/2501.14894v2
- Date: Mon, 24 Feb 2025 21:07:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:18:26.876435
- Title: Improving reliability of uncertainty-aware gaze estimation with probability calibration
- Title(参考訳): 確率校正による不確実性を考慮した視線推定の信頼性向上
- Authors: Qiaojie Zheng, Jiucai Zhang, Xiaoli Zhang,
- Abstract要約: 現在のディープラーニングによる外見に基づく不確実性認識による視線推定モデルは、一貫性のない信頼できない不確実性推定を生成する。
本稿では,いくつかのポストホックサンプルを用いた確率校正による不確実性推定の精度向上のためのワークフローを提案する。
- 参考スコア(独自算出の注目度): 13.564919425738163
- License:
- Abstract: Current deep learning powered appearance based uncertainty-aware gaze estimation models produce inconsistent and unreliable uncertainty estimation that limits their adoptions in downstream applications. In this study, we propose a workflow to improve the accuracy of uncertainty estimation using probability calibration with a few post hoc samples. The probability calibration process employs a simple secondary regression model to compensate for inaccuracies in estimated uncertainties from the deep learning model. Training of the secondary model is detached from the main deep learning model and thus no expensive weight tuning is required. The added calibration process is lightweight and relatively independent from the deep learning process, making it fast to run and easy to implement. We evaluated the effectiveness of the calibration process under four potential application scenarios with two datasets that have distinctive image characteristics due to the data collection setups. The calibration process is most effective when the calibration and testing data share similar characteristics. Even under suboptimal circumstances that calibration and testing data differ, the calibration process can still make corrections to reduce prediction errors in uncertainty estimates made by uncalibrated models.
- Abstract(参考訳): 現在のディープラーニングによる外見に基づく不確実性視線推定モデルは、下流アプリケーションにおける採用を制限する不整合かつ信頼性の低い不確実性推定を生成する。
本研究では,いくつかのポストホックサンプルを用いた確率校正による不確実性推定の精度向上のためのワークフローを提案する。
確率キャリブレーションプロセスは、単純な二次回帰モデルを用いて、ディープラーニングモデルから推定された不確かさの不正確さを補う。
二次モデルのトレーニングは、メインのディープラーニングモデルから切り離されるため、高価なウェイトチューニングは不要である。
追加のキャリブレーションプロセスは軽量であり、ディープラーニングプロセスとは比較的独立しているため、実行が早く、実装が容易である。
データ収集設定により特徴的画像特徴を有する2つのデータセットを用いて,4つの潜在的なアプリケーションシナリオ下でのキャリブレーションプロセスの有効性を評価した。
校正データと試験データが同様の特性を共有する場合、校正処理が最も効果的である。
キャリブレーションとテストデータが異なる最適条件下であっても、キャリブレーションプロセスは、未校正モデルによる不確実性推定における予測誤差を補正することができる。
関連論文リスト
- Parametric $ρ$-Norm Scaling Calibration [8.583311125489942]
出力の不確実性は、確率的特性がモデル出力の客観的特性を反映しているかどうかを示す。
本稿では,処理後パラメトリックキャリブレーション法である$rho$-Norm Scalingを導入し,キャリブレータ表現を拡張し,過度な振幅による過信を緩和する。
論文 参考訳(メタデータ) (2024-12-19T10:42:11Z) - Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling [3.4580564656984736]
既存の信頼性校正法は主に統計手法を用いてデータから校正曲線を推定する。
推定キャリブレーション曲線を利用して真のキャリブレーション誤差(TCE)を推定する新しいキャリブレーション計量(TCE_bpm$)を設計する。
実世界およびシミュレーションデータにおいて,キャリブレーション手法と測定値の有効性を検証した。
論文 参考訳(メタデータ) (2024-12-14T03:04:05Z) - Optimizing Estimators of Squared Calibration Errors in Classification [2.3020018305241337]
本稿では,2乗キャリブレーション誤差の推定器の比較と最適化を可能にする平均二乗誤差に基づくリスクを提案する。
キャリブレーション誤差を推定する際のトレーニングバリデーションテストパイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-09T15:58:06Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Calibration of Neural Networks [77.34726150561087]
本稿では,ニューラルネットワークの文脈における信頼性校正問題について調査する。
我々は,問題文,キャリブレーション定義,評価に対する異なるアプローチについて分析する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
論文 参考訳(メタデータ) (2023-03-19T20:27:51Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - A Close Look into the Calibration of Pre-trained Language Models [56.998539510508515]
事前訓練された言語モデル(PLM)は、予測の不確かさを確実に見積もることに失敗する可能性がある。
トレーニングにおけるPLMの校正性能の動的変化について検討する。
最近提案された2つの学習可能な手法を拡張して、モデルを直接収集し、合理的な信頼度を推定する。
論文 参考訳(メタデータ) (2022-10-31T21:31:07Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
有限検証データセットを用いた予測モデルの誤校正を仮説検証問題として検討する。
誤校正の検出は、クラスの条件付き確率が予測の十分滑らかな関数である場合にのみ可能である。
我々は、$ell$-Expected Error(ECE)のデバイアスドプラグイン推定器に基づくキャリブレーションのためのミニマックステストであるT-Calを提案する。
論文 参考訳(メタデータ) (2022-03-03T16:58:54Z) - Improving model calibration with accuracy versus uncertainty
optimization [17.056768055368384]
適切に校正されたモデルは、その予測が確実であるときに正確であり、不正確な場合に高い不確実性を示すべきである。
精度と不確実性の関係を不確実性校正のアンカーとして活用する最適化手法を提案する。
平均場変動推定によるアプローチの実証と最先端手法との比較を行った。
論文 参考訳(メタデータ) (2020-12-14T20:19:21Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。