論文の概要: Median of Forests for Robust Density Estimation
- arxiv url: http://arxiv.org/abs/2501.15157v1
- Date: Sat, 25 Jan 2025 09:45:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:59:28.870189
- Title: Median of Forests for Robust Density Estimation
- Title(参考訳): ロバスト密度推定のための森林の媒質
- Authors: Hongwei Wen, Annika Betken, Tao Huang,
- Abstract要約: 我々は,ロバスト密度推定(textitMFRDE)のための森林のテキストメディアンと呼ばれるアンサンブル学習アルゴリズムを提案する。
MFRDEにより、より大きいサブサンプリングサイズを選択でき、ロバスト性を確保しつつ密度推定の精度を低下させることができる。
実用面では、実データ実験により、MFRDEが既存の堅牢なカーネルベースの手法より優れていることが示されている。
- 参考スコア(独自算出の注目度): 6.696552548865382
- License:
- Abstract: Robust density estimation refers to the consistent estimation of the density function even when the data is contaminated by outliers. We find that existing forest density estimation at a certain point is inherently resistant to the outliers outside the cells containing the point, which we call \textit{non-local outliers}, but not resistant to the rest \textit{local outliers}. To achieve robustness against all outliers, we propose an ensemble learning algorithm called \textit{medians of forests for robust density estimation} (\textit{MFRDE}), which adopts a pointwise median operation on forest density estimators fitted on subsampled datasets. Compared to existing robust kernel-based methods, MFRDE enables us to choose larger subsampling sizes, sacrificing less accuracy for density estimation while achieving robustness. On the theoretical side, we introduce the local outlier exponent to quantify the number of local outliers. Under this exponent, we show that even if the number of outliers reaches a certain polynomial order in the sample size, MFRDE is able to achieve almost the same convergence rate as the same algorithm on uncontaminated data, whereas robust kernel-based methods fail. On the practical side, real data experiments show that MFRDE outperforms existing robust kernel-based methods. Moreover, we apply MFRDE to anomaly detection to showcase a further application.
- Abstract(参考訳): ロバスト密度推定は、データが外れ値によって汚染された場合でも、密度関数の一貫性のある推定を指す。
既存の森林密度推定は、その点を含むセルの外側の外れ値に対して本質的に抵抗性があるが、残りの外れ値に対して抵抗性はない。
そこで本研究では,森林のアンサンブル学習アルゴリズムである‘textit{medians of Forests for robust density Estimation} (\textit{MFRDE})を提案する。
既存のロバストカーネルベースの手法と比較して、MFRDEはより大きなサブサンプリングサイズを選択でき、ロバスト性を確保しつつ密度推定の精度を低下させる。
理論的には、局所外乱指数を導入し、局所外乱数の定量化を行う。
この指数の下では、サンプルサイズにおいて外れ値の数が多項式オーダーに達したとしても、MFRDEは非汚染データ上で同じアルゴリズムとほぼ同じ収束率を達成することができるが、頑健なカーネルベースの手法は失敗する。
実用面では、実データ実験により、MFRDEが既存の堅牢なカーネルベースの手法より優れていることが示されている。
さらに,MFRDEを異常検出に適用し,さらなる応用を示す。
関連論文リスト
- ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection [41.41164637577005]
ポストホックアウト・オブ・ディストリビューション(OOD)検出は、信頼性の高い機械学習において大きな注目を集めている。
本稿では,密度に基づくスコア設計の統一的な視点を提供するために,Bregmanの発散に基づく理論的枠組みを提案する。
我々は,提案するtextscConjNormが,様々なOOD検出設定において,新たな最先端技術を確立したことを示す。
論文 参考訳(メタデータ) (2024-02-27T21:02:47Z) - Robust Multi-Modal Density Estimation [14.643918024937758]
ROME (RObust Multi-modal Estimator) は密度推定のための非パラメトリック手法である。
我々は,ROMEが他の推定者によって提示される過度な適合や過度なスムース化の問題を克服できることを示した。
論文 参考訳(メタデータ) (2024-01-19T09:10:58Z) - Robust Inference of Manifold Density and Geometry by Doubly Stochastic
Scaling [8.271859911016719]
我々は高次元雑音下で頑健な推論のためのツールを開発する。
提案手法は, セルタイプにまたがる技術的ノイズレベルの変動に頑健であることを示す。
論文 参考訳(メタデータ) (2022-09-16T15:39:11Z) - Fast Kernel Density Estimation with Density Matrices and Random Fourier
Features [0.0]
カーネル密度推定 (KDE) は、最も広く使われている非パラメトリック密度推定法の一つである。
DMKDEは密度行列、量子力学的定式化、ランダムフーリエ特徴、明示的なカーネル近似を用いて密度推定を生成する。
DMKDEは、計算密度推定の競合と同等であり、高次元データ上で実行された場合の利点が示される。
論文 参考訳(メタデータ) (2022-08-02T02:11:10Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
単位$d$次元ユークリッド球のインジケータ関数に対応するナイーブ密度は、密度に基づくクラスタリングアルゴリズムで一般的に使用される。
局所分布特性と滑らかさの異なるデータに適応する新しいカーネル拡散密度関数を提案する。
論文 参考訳(メタデータ) (2021-10-11T09:00:33Z) - Featurized Density Ratio Estimation [82.40706152910292]
本研究では,2つの分布を推定前の共通特徴空間にマッピングするために,可逆生成モデルを活用することを提案する。
この偉業化は、学習された入力空間の密度比が任意に不正確な場合、潜在空間において密度が密接な関係をもたらす。
同時に、特徴写像の可逆性は、特徴空間で計算された比が入力空間で計算された比と同値であることを保証する。
論文 参考訳(メタデータ) (2021-07-05T18:30:26Z) - Meta-Learning for Relative Density-Ratio Estimation [59.75321498170363]
相対密度比推定(DRE)の既存の方法は、両方の密度から多くのインスタンスを必要とする。
本稿では,関係データセットの知識を用いて,相対密度比を数例から推定する,相対DREのメタラーニング手法を提案する。
提案手法の有効性を,相対的DRE,データセット比較,外乱検出の3つの問題を用いて実証的に実証した。
論文 参考訳(メタデータ) (2021-07-02T02:13:45Z) - Improved Estimation of Concentration Under $\ell_p$-Norm Distance
Metrics Using Half Spaces [14.947511752748005]
測定の集中は、敵の脆弱性の根本的な原因であると議論されている。
本稿では,実験データセットの濃度を$ell_p$-norm距離で推定する手法を提案する。
提案アルゴリズムはMahloujifar et alよりも効率的です。
合成データセットと画像ベンチマークに関する我々の実験は、より厳密な内在的堅牢性境界を見つけることができることを示した。
論文 参考訳(メタデータ) (2021-03-24T01:16:28Z) - Nonparametric Density Estimation from Markov Chains [68.8204255655161]
我々はマルコフ・チェインにインスパイアされた新しい非パラメトリック密度推定器を導入し、よく知られたケルネル密度推定器を一般化する。
我々の推定器は, 通常のものに対していくつかの利点を示し, 全密度アルゴリズムの基盤として容易に利用できる。
論文 参考訳(メタデータ) (2020-09-08T18:33:42Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDEは自己回帰密度推定のための自己アテンションに基づくアーキテクチャである。
本稿では, 生成したサンプルを用いた回帰, 分布外検出, トレーニングデータにおける雑音に対する頑健性などのタスクについて述べる。
論文 参考訳(メタデータ) (2020-04-06T07:32:51Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。