論文の概要: Exploring the Collaborative Co-Creation Process with AI: A Case Study in Novice Music Production
- arxiv url: http://arxiv.org/abs/2501.15276v1
- Date: Sat, 25 Jan 2025 17:00:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:08.625323
- Title: Exploring the Collaborative Co-Creation Process with AI: A Case Study in Novice Music Production
- Title(参考訳): AIによる協調的コークレーションプロセスの探索 : 初級音楽制作を事例として
- Authors: Yue Fu, Michele Newman, Lewis Going, Qiuzi Feng, Jin Ha Lee,
- Abstract要約: この調査は、アイデアからSpotifyでこれらの曲をリリースするまでのクリエイティブな旅の全体にわたって行われた。
われわれの発見は、AIが創造性をどう変えるかを強調している。
我々は,AIとの共同創造に関する新たな視点を提供する,Human-AI Co-Creation Stage ModelとHuman-AI Agency Modelを提案する。
- 参考スコア(独自算出の注目度): 3.3385152705660155
- License:
- Abstract: Artificial intelligence is reshaping creative domains, yet its co-creative processes, especially in group settings with novice users, remain under explored. To bridge this gap, we conducted a case study in a college-level course where nine undergraduate students were tasked with creating three original music tracks using AI tools over 10 weeks. The study spanned the entire creative journey from ideation to releasing these songs on Spotify. Participants leveraged AI for music and lyric production, cover art, and distribution. Our findings highlight how AI transforms creative workflows: accelerating ideation but compressing the traditional preparation stage, and requiring novices to navigate a challenging idea selection and validation phase. We also identified a new "collaging and refinement" stage, where participants creatively combined diverse AI-generated outputs into cohesive works. Furthermore, AI influenced group social dynamics and role division among human creators. Based on these insights, we propose the Human-AI Co-Creation Stage Model and the Human-AI Agency Model, offering new perspectives on collaborative co-creation with AI.
- Abstract(参考訳): 人工知能は創造的なドメインを形作り変えつつあるが、その共同創造プロセス、特に初心者ユーザーとのグループ設定は、まだ検討中である。
このギャップを埋めるために、9人の大学生がAIツールを用いて10週間にわたって3つのオリジナル音楽トラックの作成を任された大学レベルのケーススタディを行った。
この調査は、アイデアからSpotifyでこれらの曲をリリースするまでのクリエイティブな旅の全体にわたって行われた。
参加者はAIを音楽や歌詞の制作、カバーアート、流通に利用した。
我々の発見は、AIが創造的なワークフローをどう変えるかを強調している。アイデアの促進と従来の準備段階の圧縮、そして挑戦的なアイデアの選択と検証フェーズをナビゲートするために初心者を必要とする。
我々はまた、参加者が多種多様なAI生成出力を結合的な作品に創造的に組み合わせた新しい「コラージュ・リファインメント(collaging and refinement)」ステージを特定した。
さらに、AIは、人間の創造者間のグループ社会力学と役割分割に影響を及ぼした。
これらの知見に基づいて、AIとの共同創造に関する新たな視点を提供する、Human-AI Co-Creation Stage ModelとHuman-AI Agency Modelを提案する。
関連論文リスト
- Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Grasping AI: experiential exercises for designers [8.95562850825636]
本稿では,AIシステムにおけるインタラクション・アベイランス,ユニークなリレーショナル可能性,より広範な社会的影響を探求し,考察する手法について検討する。
比喩や制定に関する演習は、トレーニングや学習、プライバシーと同意、自律性、エージェンシーをより具体的になる。
論文 参考訳(メタデータ) (2023-10-02T15:34:08Z) - Inspire creativity with ORIBA: Transform Artists' Original Characters
into Chatbots through Large Language Model [4.984601297028257]
この研究は、イラストアートと人工知能(AI)の交差点を掘り下げる
創造的なプロセスと著者の境界に対するAIの影響を調べることで、創造的な分野における人間とAIの相互作用を強化することを目指している。
論文 参考訳(メタデータ) (2023-06-16T11:25:44Z) - Designing Participatory AI: Creative Professionals' Worries and
Expectations about Generative AI [8.379286663107845]
生成AI(英: Generative AI)とは、テキストのプロンプトに基づいて視覚的または書き起こされたコンテンツを自動生成する一連の技術で、複雑さが飛躍的に増加し、わずか数年で広く利用できるようになる技術である。
本稿では,創造的プロフェッショナルが生成AIをどのように考えるかに関する質的研究の結果を報告する。
論文 参考訳(メタデータ) (2023-03-15T20:57:03Z) - Pathway to Future Symbiotic Creativity [76.20798455931603]
そこで本研究では, 5クラス階層の創造システムを分類し, 擬人アーティストから機械アーティストへの創造の道筋を示す。
芸術創造においては、機械は欲求、感謝、感情を含む人間の精神状態を理解する必要があるが、機械の創造的能力と限界も理解する必要がある。
我々は、人間互換のAIシステムが「ループ内人間」の原理に基づいているべきだという哲学を取り入れた、未来のマシンアーティストを構築するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-18T15:12:02Z) - Artificial Intelligence for the Metaverse: A Survey [66.57225253532748]
まず、機械学習アルゴリズムやディープラーニングアーキテクチャを含むAIの予備と、メタバースにおけるその役割について紹介する。
次に、メタバースの可能性を秘めた6つの技術的側面に関するAIベースの手法に関する包括的調査を行う。
医療、製造業、スマートシティ、ゲームなどのAI支援アプリケーションは、仮想世界に展開するために研究されている。
論文 参考訳(メタデータ) (2022-02-15T03:34:56Z) - Introducing Variational Autoencoders to High School Students [12.341543369402217]
本報告では,22名の学生を対象に,授業設計について解説し,パイロット研究の知見を共有している。
我々はWebベースのゲームを開発し、哲学的な比喩であるPlatoの洞窟を使って、VAEの仕組みを紹介した。
我々のアプローチは、学生に新しいAI概念を教えるのに効果的であることがわかった。
論文 参考訳(メタデータ) (2021-11-13T04:34:15Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - AI Song Contest: Human-AI Co-Creation in Songwriting [8.399688944263843]
音楽/開発者チーム13チーム,合計61人のユーザが,AIで楽曲を共同制作する上で必要なものについて報告する。
これらの課題のいくつかを克服するために、AIの既存の特徴をどのように活用し、再利用したかを示します。
発見は、より分解可能で、操縦可能で、解釈可能で、適応的な、機械学習による音楽インターフェースを設計する必要があることを反映している。
論文 参考訳(メタデータ) (2020-10-12T01:27:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。