論文の概要: Pathway to Future Symbiotic Creativity
- arxiv url: http://arxiv.org/abs/2209.02388v2
- Date: Wed, 13 Sep 2023 08:37:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 18:41:48.097852
- Title: Pathway to Future Symbiotic Creativity
- Title(参考訳): 共生創造への道
- Authors: Yike Guo, Qifeng Liu, Jie Chen, Wei Xue, Jie Fu, Henrik Jensen,
Fernando Rosas, Jeffrey Shaw, Xing Wu, Jiji Zhang, Jianliang Xu
- Abstract要約: そこで本研究では, 5クラス階層の創造システムを分類し, 擬人アーティストから機械アーティストへの創造の道筋を示す。
芸術創造においては、機械は欲求、感謝、感情を含む人間の精神状態を理解する必要があるが、機械の創造的能力と限界も理解する必要がある。
我々は、人間互換のAIシステムが「ループ内人間」の原理に基づいているべきだという哲学を取り入れた、未来のマシンアーティストを構築するための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 76.20798455931603
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This report presents a comprehensive view of our vision on the development
path of the human-machine symbiotic art creation. We propose a classification
of the creative system with a hierarchy of 5 classes, showing the pathway of
creativity evolving from a mimic-human artist (Turing Artists) to a Machine
artist in its own right. We begin with an overview of the limitations of the
Turing Artists then focus on the top two-level systems, Machine Artists,
emphasizing machine-human communication in art creation. In art creation, it is
necessary for machines to understand humans' mental states, including desires,
appreciation, and emotions, humans also need to understand machines' creative
capabilities and limitations. The rapid development of immersive environment
and further evolution into the new concept of metaverse enable symbiotic art
creation through unprecedented flexibility of bi-directional communication
between artists and art manifestation environments. By examining the latest
sensor and XR technologies, we illustrate the novel way for art data collection
to constitute the base of a new form of human-machine bidirectional
communication and understanding in art creation. Based on such communication
and understanding mechanisms, we propose a novel framework for building future
Machine artists, which comes with the philosophy that a human-compatible AI
system should be based on the "human-in-the-loop" principle rather than the
traditional "end-to-end" dogma. By proposing a new form of inverse
reinforcement learning model, we outline the platform design of machine
artists, demonstrate its functions and showcase some examples of technologies
we have developed. We also provide a systematic exposition of the ecosystem for
AI-based symbiotic art form and community with an economic model built on NFT
technology. Ethical issues for the development of machine artists are also
discussed.
- Abstract(参考訳): 本報告は,人間-機械共生的アート創造の展開経路に関する我々のビジョンを包括的にとらえたものである。
5階級の階層を持つ創造的システムの分類を提案し,模倣的人間的アーティスト(チューリングアーティスト)から機械的アーティストへの創造的進化の経路を示す。
まず、チューリングアーティストの限界の概要から始め、トップ2レベルのシステム、マシンアーティストに焦点を当て、アート創造における機械と人間のコミュニケーションを強調します。
芸術創造においては、機械は欲求、感謝、感情を含む人間の精神状態を理解する必要があるが、機械の創造的能力と限界も理解する必要がある。
没入的環境の急速な発展とメタバースの新しい概念へのさらなる進化は、芸術家と芸術表現環境の間の双方向コミュニケーションの先例のない柔軟性を通じて共生的な芸術創造を可能にする。
最新のセンサとXR技術を調べることで、アートデータ収集が人間と機械の双方向通信と芸術創造の理解の新しい形態の基礎を構成する新しい方法を説明する。
このようなコミュニケーションと理解のメカニズムに基づき,従来の「エンド・ツー・エンド」のドグマではなく,人間互換のAIシステムが「ヒューマン・イン・ザ・ループ」の原則に基づいているべきだという考え方を取り入れた,未来のマシーンアーティストを構築するための新しいフレームワークを提案する。
逆強化学習モデルの新たな形式を提案することで,機械アーチストのプラットフォーム設計を概説し,その機能を示すとともに,私たちが開発してきた技術の例を示す。
また、NFT技術に基づく経済モデルを用いて、AIベースの共生アートフォームとコミュニティのためのエコシステムを体系的に展示する。
機械アーチストの発展に関する倫理的問題についても論じる。
関連論文リスト
- Alien Recombination: Exploring Concept Blends Beyond Human Cognitive Availability in Visual Art [90.8684263806649]
視覚芸術の創造において、AIが人間の認知的限界を超越する方法を示します。
我々の研究は、視覚芸術には膨大な未探索の概念的組み合わせが含まれているという仮説を立てている。
本稿では,人間の認知能力を超えた概念の組み合わせを同定し,生成するエイリアン組換え法を提案する。
論文 参考訳(メタデータ) (2024-11-18T11:55:38Z) - Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
本調査は,拡散に基づく視覚芸術創造の新たな領域を探求し,その発展を芸術的,技術的両面から検討する。
本研究は,芸術的要件が技術的課題にどのように変換されるかを明らかにし,視覚芸術創造における拡散法の設計と応用を強調した。
我々は、AIシステムが芸術的知覚と創造性において人間の能力をエミュレートし、潜在的に増強するメカニズムに光を当てることを目指している。
論文 参考訳(メタデータ) (2024-08-22T04:49:50Z) - Equivalence: An analysis of artists' roles with Image Generative AI from Conceptual Art perspective through an interactive installation design practice [16.063735487844628]
本研究では、アーティストが高度なテキストから画像生成AIモデルとどのように相互作用するかを検討する。
この枠組みを実証するために,「等価性」と題されたケーススタディでは,ユーザの音声入力を連続的に変化する絵画に変換する。
この研究は、アーティストの役割に対する理解を深め、画像生成AIで作成されたアートに固有の創造的側面に対する深い評価を促進することを目的としている。
論文 参考訳(メタデータ) (2024-04-29T02:45:23Z) - AI Art Neural Constellation: Revealing the Collective and Contrastive
State of AI-Generated and Human Art [36.21731898719347]
我々は、人間の芸術遺産の文脈内でAI生成芸術を位置づけるための包括的な分析を行う。
私たちの比較分析は、ArtConstellationと呼ばれる広範なデータセットに基づいています。
鍵となる発見は、1800-2000年に作られた現代美術の原理とAIが生成したアートアートが視覚的に関連していることである。
論文 参考訳(メタデータ) (2024-02-04T11:49:51Z) - DreamCreature: Crafting Photorealistic Virtual Creatures from
Imagination [140.1641573781066]
ターゲット概念のラベルなしイメージのセットを前提として、我々は、新しいハイブリッド概念を創出できるT2Iモデルをトレーニングすることを目指している。
そこで我々はDreamCreatureと呼ばれる新しい手法を提案し,その基盤となるサブ概念を同定し抽出する。
したがって、T2Iは忠実な構造とフォトリアリスティックな外観を持つ新しい概念を生成するのに適応する。
論文 参考訳(メタデータ) (2023-11-27T01:24:31Z) - Art and the science of generative AI: A deeper dive [26.675816750583138]
生成AIは、ビジュアルアート、コンセプトアート、音楽、フィクション、文学、ビデオ、アニメーションのための高品質な芸術メディアを作成することができる。
我々は、生成的AIは芸術の終焉のハービンジャーではなく、独自の余裕を持つ新しい媒体であると主張している。
論文 参考訳(メタデータ) (2023-06-07T04:27:51Z) - Art Creation with Multi-Conditional StyleGANs [81.72047414190482]
人間のアーティストは、独特のスキル、理解、そして深い感情や感情を引き起こすアートワークを作る真の意図の組み合わせが必要です。
本研究では,多条件生成支援ネットワーク(GAN)アプローチを導入し,人間の芸術を模倣する現実的な絵画を合成する。
論文 参考訳(メタデータ) (2022-02-23T20:45:41Z) - AI-based artistic representation of emotions from EEG signals: a
discussion on fairness, inclusion, and aesthetics [2.6928226868848864]
我々は、人間と機械が芸術的に感情を表現するために対話するAIベースのBrain-Computer Interface(BCI)を提案する。
この相互作用のダイナミクスを理解して、公正性、包摂性、美学の共存性を改善することを目指している。
論文 参考訳(メタデータ) (2022-02-07T14:51:02Z) - State of the Art on Neural Rendering [141.22760314536438]
我々は,古典的コンピュータグラフィックス技術と深層生成モデルを組み合わせることで,制御可能かつフォトリアリスティックな出力を得るアプローチに焦点をあてる。
本報告は,新しいビュー合成,セマンティック写真操作,顔と身体の再現,リライティング,自由視点ビデオ,バーチャルおよび拡張現実テレプレゼンスのためのフォトリアリスティックアバターの作成など,記述されたアルゴリズムの多くの重要なユースケースに焦点をあてる。
論文 参考訳(メタデータ) (2020-04-08T04:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。