論文の概要: Musical Agent Systems: MACAT and MACataRT
- arxiv url: http://arxiv.org/abs/2502.00023v1
- Date: Sun, 19 Jan 2025 22:04:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 05:47:09.601228
- Title: Musical Agent Systems: MACAT and MACataRT
- Title(参考訳): 音楽エージェントシステム:MACATとMACataRT
- Authors: Keon Ju M. Lee, Philippe Pasquier,
- Abstract要約: 我々は,人間ミュージシャンとAIの対話的音楽制作を促進するために,MACATとMACataRTという2つの異なる音楽エージェントシステムを紹介した。
MaCATはエージェント主導のパフォーマンスに最適化されており、リアルタイム合成と自己リスニングを利用して出力を自律的に形作る。
MacataRTは、音声モザイクとシーケンスベースの学習を通じて協調的な即興性を実現するフレキシブルな環境を提供する。
- 参考スコア(独自算出の注目度): 6.349140286855134
- License:
- Abstract: Our research explores the development and application of musical agents, human-in-the-loop generative AI systems designed to support music performance and improvisation within co-creative spaces. We introduce MACAT and MACataRT, two distinct musical agent systems crafted to enhance interactive music-making between human musicians and AI. MACAT is optimized for agent-led performance, employing real-time synthesis and self-listening to shape its output autonomously, while MACataRT provides a flexible environment for collaborative improvisation through audio mosaicing and sequence-based learning. Both systems emphasize training on personalized, small datasets, fostering ethical and transparent AI engagement that respects artistic integrity. This research highlights how interactive, artist-centred generative AI can expand creative possibilities, empowering musicians to explore new forms of artistic expression in real-time, performance-driven and music improvisation contexts.
- Abstract(参考訳): 本研究は,共創造空間内での音楽性能と即興性をサポートするために設計された音楽エージェント,ヒューマン・イン・ザ・ループ生成AIシステムの開発と応用について検討する。
我々は,人間ミュージシャンとAIの対話的音楽制作を促進するために,MACATとMACataRTという2つの異なる音楽エージェントシステムを紹介した。
MACATはエージェント主導のパフォーマンスに最適化されており、リアルタイム合成とセルフリスニングを使用してアウトプットを自律的に形成する。
どちらのシステムも、パーソナライズされた小さなデータセットのトレーニングを強調し、芸術的整合性を尊重する倫理的かつ透明なAIエンゲージメントを促進する。
この研究は、インタラクティブでアーティスト中心のジェネレーティブAIがクリエイティビティの可能性を拡大し、ミュージシャンがリアルタイム、パフォーマンス駆動、音楽即興のコンテキストで新しい芸術的表現を探求できるようにする方法を強調している。
関連論文リスト
- Exploring the Collaborative Co-Creation Process with AI: A Case Study in Novice Music Production [3.3385152705660155]
この調査は、アイデアからSpotifyでこれらの曲をリリースするまでのクリエイティブな旅の全体にわたって行われた。
われわれの発見は、AIが創造性をどう変えるかを強調している。
我々は,AIとの共同創造に関する新たな視点を提供する,Human-AI Co-Creation Stage ModelとHuman-AI Agency Modelを提案する。
論文 参考訳(メタデータ) (2025-01-25T17:00:17Z) - AI TrackMate: Finally, Someone Who Will Give Your Music More Than Just "Sounds Great!" [4.886175454381699]
本フレームワークでは,音楽分析モジュール,LCM可読音楽レポート,音楽制作指向フィードバック指導を統合した。
AI機能を独立したプロデューサのニーズに合わせてブリッジすることで、AI TrackMateはオンデマンドの分析フィードバックを提供する。
本システムは,独立系音楽制作の進化にともなう客観的自己評価ツールの需要の増大に対処する。
論文 参考訳(メタデータ) (2024-12-09T16:09:44Z) - A Survey of Foundation Models for Music Understanding [60.83532699497597]
この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
論文 参考訳(メタデータ) (2024-09-15T03:34:14Z) - Tidal MerzA: Combining affective modelling and autonomous code generation through Reinforcement Learning [3.6594988197536344]
Tidal-MerzAは、ライブコーディングのコンテキストにおいて、人間と機械エージェントの協調的なパフォーマンスのためのシステムである。
ALCAA(Affective Live Coding Autonomous Agent)とTidal Fuzz(計算フレームワーク)の2つの基礎モデルを融合させる。
論文 参考訳(メタデータ) (2024-09-12T10:38:55Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - Designing and Evaluating Dialogue LLMs for Co-Creative Improvised Theatre [48.19823828240628]
本研究では,Edinburgh Festival Fringeで1ヶ月のライブショーで展開されたLarge Language Models(LLMs)について紹介する。
オンザスポット多人数対話の技術的能力と制約について検討する。
我々のHuman-in-the-loop法は、文脈関連応答を生成する上で、これらのLCMの課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-05-11T23:19:42Z) - ComposerX: Multi-Agent Symbolic Music Composition with LLMs [51.68908082829048]
音楽の構成は、長い依存と調和の制約で情報を理解し、生成する能力を必要とする複雑なタスクである。
現在のLLMは、このタスクで簡単に失敗し、In-Context-LearningやChain-of-Thoughtsといったモダンな技術が組み込まれても、不適切な曲を生成する。
エージェントベースのシンボリック音楽生成フレームワークであるComposerXを提案する。
論文 参考訳(メタデータ) (2024-04-28T06:17:42Z) - Interactive Melody Generation System for Enhancing the Creativity of
Musicians [0.0]
本研究では,人間同士の協調構成の過程を列挙するシステムを提案する。
複数のリカレントニューラルネットワーク(RNN)モデルを統合することにより、このシステムは、複数の作曲家とのコラボレーションに似たエクスペリエンスを提供する。
論文 参考訳(メタデータ) (2024-03-06T01:33:48Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
我々は,UniversaL Evaluation(MARBLE)のための音楽音響表現ベンチマークを紹介する。
音響、パフォーマンス、スコア、ハイレベルな記述を含む4つの階層レベルを持つ包括的分類を定義することで、様々な音楽情報検索(MIR)タスクのベンチマークを提供することを目的としている。
次に、8つの公開データセット上の14のタスクに基づいて統一されたプロトコルを構築し、ベースラインとして音楽録音で開発されたすべてのオープンソース事前学習モデルの表現を公平かつ標準的に評価する。
論文 参考訳(メタデータ) (2023-06-18T12:56:46Z) - Pathway to Future Symbiotic Creativity [76.20798455931603]
そこで本研究では, 5クラス階層の創造システムを分類し, 擬人アーティストから機械アーティストへの創造の道筋を示す。
芸術創造においては、機械は欲求、感謝、感情を含む人間の精神状態を理解する必要があるが、機械の創造的能力と限界も理解する必要がある。
我々は、人間互換のAIシステムが「ループ内人間」の原理に基づいているべきだという哲学を取り入れた、未来のマシンアーティストを構築するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-18T15:12:02Z) - Flat latent manifolds for music improvisation between human and machine [9.571383193449648]
相互即興化が新たな体験につながるような環境では,音楽生成アルゴリズムを人間の音楽家に対抗するものとみなす。
学習モデルでは、潜在空間の定量化により新しい音楽系列を生成する。
そこで我々は,音楽実験を通じて提案手法の実証的証拠を提供し,プロのドラマーと対話的なジャムセッションのためのモデルを展開した。
論文 参考訳(メタデータ) (2022-02-23T09:00:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。