Tailoring Synthetic Gauge Fields in Ultracold Atoms via Spatially Engineered Vector Beams
- URL: http://arxiv.org/abs/2501.15479v2
- Date: Tue, 08 Apr 2025 09:08:17 GMT
- Title: Tailoring Synthetic Gauge Fields in Ultracold Atoms via Spatially Engineered Vector Beams
- Authors: Huan Wang, Shangguo Zhu, Yun Long, Mingbo Pu, Xiangang Luo,
- Abstract summary: We present a novel scheme to generate synthetic stripe fields in ultracold atoms via VB-mediated coupling of internal states.<n>Our findings establish VBs as powerful tools for quantum control and the exploration of exotic quantum states and phases.
- Score: 8.892894767562499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultracold atoms, typically manipulated by scalar beams with uniform polarization, have propelled advances in quantum simulation, computation, and metrology. Yet, vector beams (VBs) -- structured light with spatially varying polarization -- remain unexplored in this context, despite their enhanced tunability and broad optical applications. Here, we demonstrate a novel scheme to generate synthetic gauge fields in ultracold atoms via VB-mediated coupling of internal states. This approach enables angular stripe phases across an expanded parameter range, achieving a three-order-of-magnitude enhancement in the phase diagram and facilitating experimental observation. We further present an all-optical method to create topologically nontrivial giant skyrmions in spin space, with tunable topology governed by VB parameters. Our findings establish VBs as powerful tools for quantum control and the exploration of exotic quantum states and phases.
Related papers
- Programmable order by disorder effect and underlying phases through dipolar quantum simulators [0.0874967598360817]
We study two different quantum simulators composed of molecules with dipole-dipole interaction.
First result provides knowledge upon the quantum order by disorder effect of the $S=1/2$ system.
Next, we study the dipolar bosonic model with tilted polar angle which can be realized through a quantum simulator.
arXiv Detail & Related papers (2023-10-02T02:04:58Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Ultratight confinement of atoms in a Rydberg empowered optical lattice [0.0]
This article presents a novel approach for creating an atomic optical lattice with a sub-wavelength spatial structure.<n>The potential is generated by leveraging the nonlinear optical response of three-level Rydberg-dressed atoms.<n>The development of these ultra-narrow trapping techniques holds great promise for applications such as Rydberg-Fermi gates, atomtronics, quantum walks, Hubbard models, and neutral-atom quantum simulation.
arXiv Detail & Related papers (2023-01-11T13:12:53Z) - A subwavelength atomic array switched by a single Rydberg atom [0.0]
Enhancing light-matter coupling at the level of single quanta is essential for numerous applications in quantum science.
Cooperative optical response of subwavelength atomic arrays has been found to open new pathways for such strong light-matter couplings.
We demonstrate spatial control over the optical response of an atomically thin mirror formed by a subwavelength array of atoms in free space.
arXiv Detail & Related papers (2022-07-19T16:27:44Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Highly sensitive controllability of optical bistability in three-level
atomic systems [0.0]
We theoretically investigate the optical bistability phenomenon in an ensemble of $N$ non-interacting three-level atoms trapped inside an optical cavity.
The atoms are in a $Lambda$-level configuration, where one atomic transition is coupled by a cavity mode, while the other one is coupled by a classical field.
arXiv Detail & Related papers (2022-01-20T14:03:43Z) - Tailoring the degree of entanglement of two coherently coupled quantum
emitters [0.0]
Controlled molecular entanglement can serve as a test-bench to decipher more complex physical or biological mechanisms governed by the coherent coupling.
We implement hyperspectral imaging to identify pairs of coupled organic molecules trapped in a low temperature matrix.
We also demonstrate far-field selective excitation of the long-lived subradiant delocalized states with a laser field tailored in amplitude and phase.
arXiv Detail & Related papers (2021-09-22T08:30:59Z) - High-order topological quantum optics in ultracold atomic metasurfaces [0.0]
We study high-order topological quantum optics in an ultracold atom metasurface intended to mimic the Su-Schrieffer-Heeger model.
We find the existence of long-range interactions beyond nearest-neighbor ones leads to isolated corner states in the band gap.
We show a corner atom can be addressed by a laser drive far away from it via these nontrivial states.
arXiv Detail & Related papers (2021-08-03T13:51:23Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Arbitrary cylindrical vector beam generation enabled by
polarization-selective Gouy phase shifter [0.0]
Cylindrical vector beams (CVBs) possess polarization distribution of rotational symmetry on the transverse plane.
Conventional methods to generate CVBs contain redundant interferometers or need to switch among diverse elements.
Here we provide a passive polarization-selective device to replace interferometers and simplify generation setup.
arXiv Detail & Related papers (2021-01-11T07:51:51Z) - Quantum simulation with fully coherent dipole--dipole-interactions
mediated by three-dimensional subwavelength atomic arrays [0.0]
Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum many-body problems.
Here, we propose to use a simple cubic three-dimensional array of atoms to produce an omnidirectional bandgap for light.
We show that it enables coherent, dissipation-free interactions between embedded impurities.
arXiv Detail & Related papers (2020-12-23T16:26:20Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.