Programmable order by disorder effect and underlying phases through dipolar quantum simulators
- URL: http://arxiv.org/abs/2310.00849v3
- Date: Fri, 21 Jun 2024 07:40:50 GMT
- Title: Programmable order by disorder effect and underlying phases through dipolar quantum simulators
- Authors: Huan-Kuang Wu, Takafumi Suzuki, Naoki Kawashima, Wei-Lin Tu,
- Abstract summary: We study two different quantum simulators composed of molecules with dipole-dipole interaction.
First result provides knowledge upon the quantum order by disorder effect of the $S=1/2$ system.
Next, we study the dipolar bosonic model with tilted polar angle which can be realized through a quantum simulator.
- Score: 0.0874967598360817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we study two different quantum simulators composed of molecules with dipole-dipole interaction through various theoretical and numerical tools. Our first result provides knowledge upon the quantum order by disorder effect of the $S=1/2$ system, which is programmable in a quantum simulator composed of circular Rydberg atoms in the triangular optical lattice with a controllable diagonal anisotropy. When the numbers of up spins and down spins are equal, a set of sub-extensive degenerate ground states is present in the classical limit, composed of continuous strings whose configuration enjoys a large degree of freedom. Adopting the the real space perturbation theory, our calculation demonstrates a lifting of the degeneracy, favoring the stripe configuration. When $J$ becomes larger, we adopt the infinite projected entangled-pair state~(iPEPS) and numerically check the effect of degeneracy lifting. The iPEPS results show that even when the spin exchange coupling is strong the stripe pattern is still favored. Next, we study the dipolar bosonic model with tilted polar angle which can be realized through a quantum simulator composed of cold atomic gas with dipole-dipole interaction in an optical lattice. By placing the atoms in a triangular lattice and tilting the polar angle, the diagonal anisotropy can also be realized in the bosonic system. With our cluster mean-field theory calculation, we provide various phase diagrams with different tilted angles, showing the abundant underlying phases including the supersolid. Our proposal indicates realizable scenarios through quantum simulators in studying the quantum effect as well as extraordinary phases. We believe that our results indicated here can also become a good benchmark for the two-dimensional quantum simulators.
Related papers
- Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
Mapping fermions to qubits is challenging in $2+1$ and higher spacetime dimensions.
We propose a native fermion-(large-)spin analog quantum simulator by utilizing dopant arrays in silicon.
arXiv Detail & Related papers (2024-07-03T18:00:52Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Simulating the Transverse Field Ising Model on the Kagome Lattice using a Programmable Quantum Annealer [0.0]
We embed the antiferromagnetic Ising model on the Kagome lattice on the latest architecture of D-Wave's quantum annealer, the Advantage2 prototype.
We show that under a finite longitudinal field the system exhibits a one-third magnetization plateau, consistent with a classical spin liquid state of reduced entropy.
An anneal-pause-quench protocol is then used to extract an experimental ensemble of states resulting from the equilibration of the model at finite transverse and longitudinal field.
arXiv Detail & Related papers (2023-10-10T15:22:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - Probing resonating valence bonds on a programmable germanium quantum
simulator [0.0]
We introduce quantum simulation using hole spins in germanium quantum dots.
We demonstrate extensive and coherent control enabling the tuning of multi-spin states in isolated, paired, and fully coupled quantum dots.
arXiv Detail & Related papers (2022-08-24T12:55:51Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.