Joint Communication and Sensing with Bipartite Entanglement over Bosonic Channels
- URL: http://arxiv.org/abs/2501.15675v1
- Date: Sun, 26 Jan 2025 21:10:57 GMT
- Title: Joint Communication and Sensing with Bipartite Entanglement over Bosonic Channels
- Authors: Tuna Erdoğan, Shi-Yuan Wang, Shang-Jen Su, Matthieu Bloch,
- Abstract summary: We consider a joint communication and sensing problem in an optical link in which a low-power transmitter attempts to communicate with a receiver while simultaneously identifying the range of a defect creating a backscattered signal.
Motivated by the envisioned deployment of entanglement sharing quantum networks, we allow the transmitter to exploit entanglement to assist its sensing and communication.
Our main result is a characterization of the trade-offs incurred in the form of an achievable rate/error-exponent region which can beat time-sharing in certain cases.
- Score: 8.444687277893829
- License:
- Abstract: We consider a joint communication and sensing problem in an optical link in which a low-power transmitter attempts to communicate with a receiver while simultaneously identifying the range of a defect creating a backscattered signal. We model the system as a lossy thermal noise bosonic channel in which the location of the target, modeled as a beamsplitter, affects the timing of the backscattered signal. Motivated by the envisioned deployment of entanglement sharing quantum networks, we allow the transmitter to exploit entanglement to assist its sensing and communication. Since entanglement is known to enhance sensing, as known from quantum illumination, and increase communication rates, as known from the characterization of the entanglement-assisted capacity, the transmitter is faced with a trade-off and must judiciously allocate its entanglement resources. Our main result is a characterization of the trade-offs incurred in the form of an achievable rate/error-exponent region which can beat time-sharing in certain cases. The proof of our result relies on technical results of independent interests, by which we carefully show how to extend the known asymptotic characterization of multi-hypothesis testing Chernoff exponent in finite-dimensional spaces to infinite-dimensional spaces and provide a characterization of phase shift keying modulated displaced thermal states in Fock basis.
Related papers
- A Memory-Based Reinforcement Learning Approach to Integrated Sensing and Communication [52.40430937325323]
We consider a point-to-point integrated sensing and communication (ISAC) system, where a transmitter conveys a message to a receiver over a channel with memory.
We formulate the capacity-distortion tradeoff for the ISAC problem when sensing is performed in an online fashion.
arXiv Detail & Related papers (2024-12-02T03:30:50Z) - Joint Communication and Eavesdropper Detection on the Lossy Bosonic Channel [1.3654846342364306]
We study the problem of joint communication and detection of wiretapping on an optical fiber from a quantum perspective.
Our system model describes a communication link that is capable of transmitting data under normal operating conditions and raising a warning at the transmitter side in case of eavesdropping.
arXiv Detail & Related papers (2024-11-29T11:21:10Z) - Joint Communication and Sensing over the Lossy Bosonic Quantum Channel [1.534667887016089]
We study the problem of joint communication and sensing for data transmission systems.
We use optimal quantum instruments in order to transmit data and, at the same time, estimate environmental parameters.
arXiv Detail & Related papers (2024-11-18T14:26:17Z) - Increasing the secret key rate of satellite-to-ground entanglement-based QKD assisted by adaptive optics [0.48182159227299687]
Future quantum networks will be composed of both terrestrial links for metropolitan and continent-scale connections and space-based links for global coverage and infrastructure resilience.
The propagation of quantum signals through the atmosphere is severely impacted by the effects of turbulence.
This is even more the case for entanglement-based quantum communication protocols requiring two free-space channels to be considered simultaneously.
We show in particular that this improves the performance of entanglement-based quantum key distribution by up to a few hundred bits per second when compared with the uncorrected scenario.
arXiv Detail & Related papers (2024-11-14T16:16:10Z) - Pulse shape optimization against Doppler shifts and delays in optical quantum communication [0.0]
We analyze the influence of systematic and Doppler shift and delay in the specific case of a quantum key distribution protocol.
We find that optimizing the pulse shape can be a building block in the resilient design of quantum network infrastructure.
arXiv Detail & Related papers (2024-10-01T16:39:02Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Random Orthogonalization for Federated Learning in Massive MIMO Systems [85.71432283670114]
We propose a novel communication design for federated learning (FL) in a massive multiple-input and multiple-output (MIMO) wireless system.
Key novelty of random orthogonalization comes from the tight coupling of FL and two unique characteristics of massive MIMO -- channel hardening and favorable propagation.
We extend this principle to the downlink communication phase and develop a simple but highly effective model broadcast method for FL.
arXiv Detail & Related papers (2022-10-18T14:17:10Z) - Data-Driven Blind Synchronization and Interference Rejection for Digital
Communication Signals [98.95383921866096]
We study the potential of data-driven deep learning methods for separation of two communication signals from an observation of their mixture.
We show that capturing high-resolution temporal structures (nonstationarities) leads to substantial performance gains.
We propose a domain-informed neural network (NN) design that is able to improve upon both "off-the-shelf" NNs and classical detection and interference rejection methods.
arXiv Detail & Related papers (2022-09-11T14:10:37Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.