論文の概要: Memorization and Regularization in Generative Diffusion Models
- arxiv url: http://arxiv.org/abs/2501.15785v1
- Date: Mon, 27 Jan 2025 05:17:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:54:19.291825
- Title: Memorization and Regularization in Generative Diffusion Models
- Title(参考訳): 生成拡散モデルにおける記憶と規則化
- Authors: Ricardo Baptista, Agnimitra Dasgupta, Nikola B. Kovachki, Assad Oberai, Andrew M. Stuart,
- Abstract要約: 拡散モデルは、生成モデリングの強力なフレームワークとして登場した。
この分析は、解析的に抽出可能な最小化器の再生を避けるための正規化の必要性を強調している。
実験は記憶の文脈で評価され、今後の正規化の方向性が強調される。
- 参考スコア(独自算出の注目度): 5.128303432235475
- License:
- Abstract: Diffusion models have emerged as a powerful framework for generative modeling. At the heart of the methodology is score matching: learning gradients of families of log-densities for noisy versions of the data distribution at different scales. When the loss function adopted in score matching is evaluated using empirical data, rather than the population loss, the minimizer corresponds to the score of a time-dependent Gaussian mixture. However, use of this analytically tractable minimizer leads to data memorization: in both unconditioned and conditioned settings, the generative model returns the training samples. This paper contains an analysis of the dynamical mechanism underlying memorization. The analysis highlights the need for regularization to avoid reproducing the analytically tractable minimizer; and, in so doing, lays the foundations for a principled understanding of how to regularize. Numerical experiments investigate the properties of: (i) Tikhonov regularization; (ii) regularization designed to promote asymptotic consistency; and (iii) regularizations induced by under-parameterization of a neural network or by early stopping when training a neural network. These experiments are evaluated in the context of memorization, and directions for future development of regularization are highlighted.
- Abstract(参考訳): 拡散モデルは、生成モデリングの強力なフレームワークとして登場した。
この方法論の核心は、スコアマッチングである: 異なるスケールでデータ分散のノイズの多いバージョンに対して、ログ密度のファミリーの学習勾配。
スコアマッチングで採用された損失関数を、人口減少ではなく経験データを用いて評価すると、最小化器は時間依存のガウス混合のスコアに対応する。
しかし、この分析的に抽出可能な最小化器の使用は、データの記憶に繋がる: 条件のない設定と条件付き設定の両方において、生成モデルはトレーニングサンプルを返す。
本稿では,記憶の力学機構の解析を含む。
この分析は、解析的にトラクタブルな最小化器の再生を避けるために正規化の必要性を強調し、そのようにして、正規化の原理的理解の基礎を定めている。
数値実験は以下の性質を調査する。
(i)チホノフ正則化
二 漸近的整合性を促進するために考案された正則化、及び
三 ニューラルネットワークのパラメータ以下による正規化、又はニューラルネットワークを訓練する際の早期停止による正規化。
これらの実験は記憶の文脈で評価され、今後の正規化の方向性が強調される。
関連論文リスト
- Neural Network-Based Score Estimation in Diffusion Models: Optimization
and Generalization [12.812942188697326]
拡散モデルは、忠実さ、柔軟性、堅牢性を改善した高品質なサンプルを生成する際に、GANと競合する強力なツールとして登場した。
これらのモデルの主要な構成要素は、スコアマッチングを通じてスコア関数を学ぶことである。
様々なタスクにおいて経験的な成功にもかかわらず、勾配に基づくアルゴリズムが証明可能な精度でスコア関数を学習できるかどうかは不明である。
論文 参考訳(メタデータ) (2024-01-28T08:13:56Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Modeling High-Dimensional Data with Unknown Cut Points: A Fusion
Penalized Logistic Threshold Regression [2.520538806201793]
従来のロジスティック回帰モデルでは、リンク関数は線形で連続であると見なされることが多い。
我々は、全ての連続した特徴が順序レベルに離散化され、さらにバイナリ応答が決定されるしきい値モデルを考える。
糖尿病のような慢性疾患の早期発見と予知の問題において,ラッソモデルが好適であることが判明した。
論文 参考訳(メタデータ) (2022-02-17T04:16:40Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
生成ガウス混合モデルに基づく二項線形分類について検討する。
後者の分類誤差に関する新しい非漸近境界を導出する。
この結果は, 確率が一定である雑音モデルに拡張される。
論文 参考訳(メタデータ) (2020-11-18T07:59:55Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
現代のディープラーニングモデルでは、トレーニングデータに適合するために必要なパラメータよりもはるかに多くのパラメータが採用されている。
この予期せぬ振る舞いを記述するための新たなパラダイムは、エンファンダブル降下曲線(英語版)である。
本稿では,勾配降下を伴う広帯域ニューラルネットワークの挙動を特徴付けるニューラル・タンジェント・カーネルを用いた一般化の高精度な高次元解析を行う。
論文 参考訳(メタデータ) (2020-08-15T20:55:40Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。