Potential Applications of Artificial Intelligence for Cross-language Intelligibility Assessment of Dysarthric Speech
- URL: http://arxiv.org/abs/2501.15858v2
- Date: Tue, 04 Feb 2025 10:58:25 GMT
- Title: Potential Applications of Artificial Intelligence for Cross-language Intelligibility Assessment of Dysarthric Speech
- Authors: Eunjung Yeo, Julie Liss, Visar Berisha, David Mortensen,
- Abstract summary: We propose a conceptual framework consisting of a universal model that captures language-universal speech impairments and a language-specific intelligibility model.
We identify key barriers to cross-language intelligibility assessment, including data scarcity, annotation complexity, and limited linguistic insights.
- Score: 13.475654818182988
- License:
- Abstract: Purpose: This commentary introduces how artificial intelligence (AI) can be leveraged to advance cross-language intelligibility assessment of dysarthric speech. Method: We propose a conceptual framework consisting of a universal model that captures language-universal speech impairments and a language-specific intelligibility model that incorporates linguistic nuances. Additionally, we identify key barriers to cross-language intelligibility assessment, including data scarcity, annotation complexity, and limited linguistic insights, and present AI-driven solutions to overcome these challenges. Conclusion: Advances in AI offer transformative opportunities to enhance cross-language intelligibility assessment for dysarthric speech by balancing scalability across languages and adaptability by languages.
Related papers
- Building A Unified AI-centric Language System: analysis, framework and future work [0.0]
This paper explores the design of a unified AI-centric language system.
We propose a framework that translates diverse natural language inputs into a streamlined AI-friendly language.
arXiv Detail & Related papers (2025-02-06T20:32:57Z) - IOLBENCH: Benchmarking LLMs on Linguistic Reasoning [8.20398036986024]
We introduce IOLBENCH, a novel benchmark derived from International Linguistics Olympiad (IOL) problems.
This dataset encompasses diverse problems testing syntax, morphology, phonology, and semantics.
We find that even the most advanced models struggle to handle the intricacies of linguistic complexity.
arXiv Detail & Related papers (2025-01-08T03:15:10Z) - Devising a Set of Compact and Explainable Spoken Language Feature for Screening Alzheimer's Disease [52.46922921214341]
Alzheimer's disease (AD) has become one of the most significant health challenges in an aging society.
We devised an explainable and effective feature set that leverages the visual capabilities of a large language model (LLM) and the Term Frequency-Inverse Document Frequency (TF-IDF) model.
Our new features can be well explained and interpreted step by step which enhance the interpretability of automatic AD screening.
arXiv Detail & Related papers (2024-11-28T05:23:22Z) - A Survey on Lexical Ambiguity Detection and Word Sense Disambiguation [0.0]
This paper explores techniques that focus on understanding and resolving ambiguity in language within the field of natural language processing (NLP)
It outlines diverse approaches ranging from deep learning techniques to leveraging lexical resources and knowledge graphs like WordNet.
The research identifies persistent challenges in the field, such as the scarcity of sense annotated corpora and the complexity of informal clinical texts.
arXiv Detail & Related papers (2024-03-24T12:58:48Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Are Structural Concepts Universal in Transformer Language Models?
Towards Interpretable Cross-Lingual Generalization [27.368684663279463]
We investigate the potential for explicitly aligning conceptual correspondence between languages to enhance cross-lingual generalization.
Using the syntactic aspect of language as a testbed, our analyses of 43 languages reveal a high degree of alignability.
We propose a meta-learning-based method to learn to align conceptual spaces of different languages.
arXiv Detail & Related papers (2023-10-19T14:50:51Z) - Rethinking the Evaluating Framework for Natural Language Understanding
in AI Systems: Language Acquisition as a Core for Future Metrics [0.0]
In the burgeoning field of artificial intelligence (AI), the unprecedented progress of large language models (LLMs) in natural language processing (NLP) offers an opportunity to revisit the entire approach of traditional metrics of machine intelligence.
Our paper proposes a paradigm shift from the established Turing Test towards an all-embracing framework that hinges on language acquisition.
arXiv Detail & Related papers (2023-09-21T11:34:52Z) - BabySLM: language-acquisition-friendly benchmark of self-supervised
spoken language models [56.93604813379634]
Self-supervised techniques for learning speech representations have been shown to develop linguistic competence from exposure to speech without the need for human labels.
We propose a language-acquisition-friendly benchmark to probe spoken language models at the lexical and syntactic levels.
We highlight two exciting challenges that need to be addressed for further progress: bridging the gap between text and speech and between clean speech and in-the-wild speech.
arXiv Detail & Related papers (2023-06-02T12:54:38Z) - SHINE: Syntax-augmented Hierarchical Interactive Encoder for Zero-shot
Cross-lingual Information Extraction [47.88887327545667]
In this study, a syntax-augmented hierarchical interactive encoder (SHINE) is proposed to transfer cross-lingual IE knowledge.
SHINE is capable of interactively capturing complementary information between features and contextual information.
Experiments across seven languages on three IE tasks and four benchmarks verify the effectiveness and generalization ability of the proposed method.
arXiv Detail & Related papers (2023-05-21T08:02:06Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
We propose a Semantics-Aware Inferential Network (SAIN) to meet such a motivation.
Taking explicit contextualized semantics as a complementary input, the inferential module of SAIN enables a series of reasoning steps over semantic clues.
Our model achieves significant improvement on 11 tasks including machine reading comprehension and natural language inference.
arXiv Detail & Related papers (2020-04-28T07:24:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.