論文の概要: Gaussian credible intervals in Bayesian nonparametric estimation of the unseen
- arxiv url: http://arxiv.org/abs/2501.16008v1
- Date: Mon, 27 Jan 2025 12:48:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:58:12.747818
- Title: Gaussian credible intervals in Bayesian nonparametric estimation of the unseen
- Title(参考訳): ベイズ非パラメトリック推定におけるガウス的信頼区間
- Authors: Claudia Contardi, Emanuele Dolera, Stefano Favaro,
- Abstract要約: 未確認種問題は、異なる種に属する個体の集団から、おそらく無限のサンプルを、ngeq1$と仮定する。
我々は,任意の$ngeq1$に対して,K_n,m$に対して大きな$m$信頼区間を導出する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 7.54430260415628
- License:
- Abstract: The unseen-species problem assumes $n\geq1$ samples from a population of individuals belonging to different species, possibly infinite, and calls for estimating the number $K_{n,m}$ of hitherto unseen species that would be observed if $m\geq1$ new samples were collected from the same population. This is a long-standing problem in statistics, which has gained renewed relevance in biological and physical sciences, particularly in settings with large values of $n$ and $m$. In this paper, we adopt a Bayesian nonparametric approach to the unseen-species problem under the Pitman-Yor prior, and propose a novel methodology to derive large $m$ asymptotic credible intervals for $K_{n,m}$, for any $n\geq1$. By leveraging a Gaussian central limit theorem for the posterior distribution of $K_{n,m}$, our method improves upon competitors in two key aspects: firstly, it enables the full parameterization of the Pitman-Yor prior, including the Dirichlet prior; secondly, it avoids the need of Monte Carlo sampling, enhancing computational efficiency. We validate the proposed method on synthetic and real data, demonstrating that it improves the empirical performance of competitors by significantly narrowing the gap between asymptotic and exact credible intervals for any $m\geq1$.
- Abstract(参考訳): 未知種問題では、異なる種に属する個体の集団から、おそらく無限の標本を$n\geq1$と仮定し、同じ個体群から新しい標本が採取された場合、観測されるであろう無害種数$K_{n,m}$を推定するよう求めている。
これは統計学における長年の問題であり、特にn$とm$という大きな値の環境では、生物科学と物理科学が再び関係している。
本稿では、Pitman-Yorの下での未確認種数問題に対するベイズ的非パラメトリックなアプローチを採用し、任意の$n\geq1$に対して、K_{n,m}$に対して、大きな$m$漸近可換区間を導出する新しい方法論を提案する。
K_{n,m}$ の後方分布に対するガウス中心極限定理を利用することで、まず、ディリクレを含むピットマン-ヨル先行の完全なパラメータ化を可能にし、次にモンテカルロサンプリングの必要性を回避し、計算効率を向上する。
提案手法を合成および実データで検証し,m\geq1$の漸近区間と正確な信頼区間とのギャップを著しく狭めることにより,競争相手の経験的性能を向上させることを示した。
関連論文リスト
- Outlier-robust Mean Estimation near the Breakdown Point via Sum-of-Squares [4.335413713700667]
我々は citekothari2018robust で導入された正準平方和プログラムを新たに解析する。
このプログラムは,すべての $varepsilon に対して[0,frac12)$ の誤差率を効率よく達成できることを示す。
論文 参考訳(メタデータ) (2024-11-21T16:57:05Z) - Convergence Rate Analysis of LION [54.28350823319057]
LION は、勾配カルシュ=クーン=T (sqrtdK-)$で測定された $cal(sqrtdK-)$ の反復を収束する。
従来のSGDと比較して,LIONは損失が小さく,性能も高いことを示す。
論文 参考訳(メタデータ) (2024-11-12T11:30:53Z) - Optimal score estimation via empirical Bayes smoothing [13.685846094715364]
未知確率分布$rho*$のスコア関数を$n$独立分布および$d$次元における同一分布観測から推定する問題について検討する。
ガウスカーネルに基づく正規化スコア推定器は、一致するミニマックス下界によって最適に示され、この値が得られることを示す。
論文 参考訳(メタデータ) (2024-02-12T16:17:40Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
iid 観測のペア $(x_t sim p, x'_t sim q)$ が時間の経過とともに観測されるような,オンラインな非パラメトリック LRE (OLRE) のための新しいフレームワークを提案する。
本稿では,OLRE法の性能に関する理論的保証と,合成実験における実証的検証について述べる。
論文 参考訳(メタデータ) (2023-11-03T13:20:11Z) - Robust Linear Predictions: Analyses of Uniform Concentration, Fast Rates
and Model Misspecification [16.0817847880416]
ヒルベルト空間上の様々な線形予測問題を含む統一的なフレームワークを提供する。
誤特定レベル $epsilon$ に対して、これらの推定器は、文献で最もよく知られたレートと一致する、$O(maxleft|mathcalO|1/2n-1/2, |mathcalI|1/2n-1 right+epsilon)$ の誤差率を達成する。
論文 参考訳(メタデータ) (2022-01-06T08:51:08Z) - Under-bagging Nearest Neighbors for Imbalanced Classification [63.026765294759876]
我々は,不均衡な分類問題に対して,textitunder-bagging $k$-NN (textitunder-bagging $k$-NN) というアンサンブル学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-01T14:10:38Z) - Covariance-Aware Private Mean Estimation Without Private Covariance Estimation [10.036088581191592]
2つのサンプル係数差分プライベート平均推定器を$d$-dimensional(sub)Gaussian分布に対して提案する。
我々の推定子は、$| tildemu - mu |_Sigma leq alpha$, where $| cdot |_Sigma$がマハラノビス距離であるような$tildemu$を出力します。
論文 参考訳(メタデータ) (2021-06-24T21:40:07Z) - Optimal Sub-Gaussian Mean Estimation in $\mathbb{R}$ [5.457150493905064]
ガウス下収束を考慮した新しい推定器を提案する。
我々の推定器はその分散に関する事前の知識を必要としない。
我々の推定器の構成と分析は、他の問題に一般化可能なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-11-17T02:47:24Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
テュバコフ雑音の存在下でのハーフスペースの学習可能性について検討する。
真半空間に関して誤分類誤差$epsilon$を達成するアルゴリズムを与える。
論文 参考訳(メタデータ) (2020-06-11T14:25:02Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。