論文の概要: Optimal Signal Decomposition-based Multi-Stage Learning for Battery Health Estimation
- arxiv url: http://arxiv.org/abs/2501.16377v1
- Date: Fri, 24 Jan 2025 04:13:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:42:30.793426
- Title: Optimal Signal Decomposition-based Multi-Stage Learning for Battery Health Estimation
- Title(参考訳): 最適信号分解に基づく多段階学習による電池の健康評価
- Authors: Vijay Babu Pamshetti, Wei Zhang, King Jet Tseng, Bor Kiat Ng, Qingyu Yan,
- Abstract要約: 電池の健康評価に最適な信号分解に基づく多段階機械学習OSLを提案する。
OSLは、最適化された変分モード分解を用いて、元の電池信号の異なる周波数帯域を捉えた信号を抽出する。
- 参考スコア(独自算出の注目度): 2.8202443616982884
- License:
- Abstract: Battery health estimation is fundamental to ensure battery safety and reduce cost. However, achieving accurate estimation has been challenging due to the batteries' complex nonlinear aging patterns and capacity regeneration phenomena. In this paper, we propose OSL, an optimal signal decomposition-based multi-stage machine learning for battery health estimation. OSL treats battery signals optimally. It uses optimized variational mode decomposition to extract decomposed signals capturing different frequency bands of the original battery signals. It also incorporates a multi-stage learning process to analyze both spatial and temporal battery features effectively. An experimental study is conducted with a public battery aging dataset. OSL demonstrates exceptional performance with a mean error of just 0.26%. It significantly outperforms comparison algorithms, both those without and those with suboptimal signal decomposition and analysis. OSL considers practical battery challenges and can be integrated into real-world battery management systems, offering a good impact on battery monitoring and optimization.
- Abstract(参考訳): バッテリーの安全性確保とコスト削減には、バッテリーの健康評価が不可欠だ。
しかし, 電池の複雑な非線形時効パターンとキャパシティ再生現象により, 正確な推定が困難である。
本稿では,信号分解に基づく多段階機械学習OSLを提案する。
OSLはバッテリー信号を最適に処理する。
最適化された変分モード分解を使用して、元のバッテリ信号の異なる周波数帯域をキャプチャする分解された信号を抽出する。
また、空間的および時間的バッテリー特性を効果的に分析するための多段階学習プロセスも組み込まれている。
パブリックバッテリー老化データセットを用いて実験を行った。
OSLは平均誤差が0.26%の例外的な性能を示す。
非最適信号分解解析法と非最適信号分解解析法の両方で比較アルゴリズムを著しく上回っている。
OSLは実用的なバッテリーの課題を考慮し、実際のバッテリー管理システムに統合することができ、バッテリーの監視と最適化に大きな影響を与える。
関連論文リスト
- Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation [0.0]
本稿では、バッテリパラメータ間で独立した依存性グラフ構造を組み込むことを共同で学習するバッテリグラフネットワークフレームワークを提案する。
提案手法は,市販のバッテリデータセットにおいて,いくつかの一般的な手法よりも優れた性能を示し,SOTA性能を実現する。
論文 参考訳(メタデータ) (2024-08-14T15:44:56Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
本稿では,ベースステーション(BS)とデバイスの両方を活用するセミフェデレーション学習(SemiFL)パラダイムを提案し,中央集権学習(CL)とFLのハイブリッド実装を提案する。
我々はこの難解な問題を解くための2段階のアルゴリズムを提案し、ビームフォーマに閉形式解を提供する。
論文 参考訳(メタデータ) (2023-10-04T03:32:39Z) - Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
バッテリー性能と「使い勝手」を設計・使用の機能として理解することが最重要事項である。
健康記述子の28個のバッテリ状態を予測するために, ディープ・トランスフォーマー・ネットワーク経由で, その方向への第一歩を提示する。
論文 参考訳(メタデータ) (2023-09-18T15:04:40Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries [1.2468700211588883]
健康状態(SOH)の正確な予測は、電池寿命に対するユーザの不安を緩和するだけでなく、バッテリーの管理に重要な情報を提供する。
本稿では,視覚変換器(ViT)モデルに基づくSOHの予測手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T16:54:15Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
バッテリーと太陽光発電システムのコストの低下は、ソーラーバッテリーの家庭用システムの増加に繋がった。
本研究では,システム内の電池の充電および放電挙動を最適化するために,深い決定論的ポリシーアルゴリズムを用いる。
論文 参考訳(メタデータ) (2021-09-10T10:59:14Z) - Simple statistical models and sequential deep learning for Lithium-ion
batteries degradation under dynamic conditions: Fractional Polynomials vs
Neural Networks [1.8899300124593648]
リチウム イオン電池の長寿そして安全は電池の作動条件の有効な監視そして調節によって促進されます。
バッテリー管理システム上の状態の健康(SoH)監視のための迅速かつ正確なアルゴリズムを実装することが重要です。
本稿では,長期記憶ニューラルネットワークと多変量多項回帰の2つのデータ駆動手法を提案し,比較する。
論文 参考訳(メタデータ) (2021-02-16T12:26:23Z) - Machine learning pipeline for battery state of health estimation [3.0238880199349834]
我々は,バッテリ容量のフェードを推定するための機械学習パイプラインの設計と評価を行う。
パイプラインは、2つのパラメトリックおよび2つの非パラメトリックアルゴリズムを用いて、関連する信頼区間で電池SOHを推定する。
高速充電プロトコルの下で動作しているセルにデプロイすると、最良のモデルでは、ルート平均2乗誤差が0.45%に達する。
論文 参考訳(メタデータ) (2021-02-01T13:50:56Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。