UDiTQC: U-Net-Style Diffusion Transformer for Quantum Circuit Synthesis
- URL: http://arxiv.org/abs/2501.16380v1
- Date: Fri, 24 Jan 2025 15:15:50 GMT
- Title: UDiTQC: U-Net-Style Diffusion Transformer for Quantum Circuit Synthesis
- Authors: Zhiwei Chen, Hao Tang,
- Abstract summary: Current diffusion model approaches based on U-Net architectures, while promising, encounter challenges related to computational efficiency and modeling global context.
We propose UDiT,a novel U-Net-style Diffusion Transformer architecture, which combines U-Net's strengths in multi-scale feature extraction with the Transformer's ability to model global context.
- Score: 13.380226276791818
- License:
- Abstract: Quantum computing is a transformative technology with wide-ranging applications, and efficient quantum circuit generation is crucial for unlocking its full potential. Current diffusion model approaches based on U-Net architectures, while promising, encounter challenges related to computational efficiency and modeling global context. To address these issues, we propose UDiT,a novel U-Net-style Diffusion Transformer architecture, which combines U-Net's strengths in multi-scale feature extraction with the Transformer's ability to model global context. We demonstrate the framework's effectiveness on two tasks: entanglement generation and unitary compilation, where UDiTQC consistently outperforms existing methods. Additionally, our framework supports tasks such as masking and editing circuits to meet specific physical property requirements. This dual advancement, improving quantum circuit synthesis and refining generative model architectures, marks a significant milestone in the convergence of quantum computing and machine learning research.
Related papers
- Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement [0.0]
We propose a novel architecture, which incorporates pointwise convolution within a quantum neural network framework.
By using quantum circuits, we map data to a higher-dimensional space, capturing more complex feature relationships.
In experiments, we applied the quantum pointwise convolution layer to classification tasks on the FashionMNIST and CIFAR10 datasets.
arXiv Detail & Related papers (2024-12-02T08:03:59Z) - Ground-State Preparation of the Fermi-Hubbard Model on a Quantum Computer with 2D Topology via Quantum Eigenvalue Transformation of Unitary Matrices [0.0]
We apply the QETU algorithm to the $2 times 2$ Fermi-Hubbard model.
We present circuit simplifications tailored to the model and introduce a mapping to a 9-qubit grid-like hardware architecture inspired by fermionic swap networks.
arXiv Detail & Related papers (2024-11-27T17:32:17Z) - Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning [3.6881738506505988]
We propose differentiable quantum architecture search (DiffQAS) to enable trainable circuit parameters and structure weights.
We show that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures.
arXiv Detail & Related papers (2024-07-25T17:11:00Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community.
We propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer.
arXiv Detail & Related papers (2024-07-17T18:38:48Z) - Learning with SASQuaTCh: a Novel Variational Quantum Transformer Architecture with Kernel-Based Self-Attention [0.464982780843177]
We present a variational quantum circuit architecture named Self-Attention Sequential Quantum Transformer Channel (SASQuaT)
Our approach leverages recent insights from kernel-based operator learning in the context of predicting vision transformer network using simple gate operations and a set of multi-dimensional quantum Fourier transforms.
To validate our approach, we consider image classification tasks in simulation and with hardware, where with only 9 qubits and a handful of parameters we are able to simultaneously embed and classify a grayscale image of handwritten digits with high accuracy.
arXiv Detail & Related papers (2024-03-21T18:00:04Z) - Quantum circuit synthesis with diffusion models [0.6554326244334868]
We use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation.
We steer the model to produce desired quantum operations within gate-based quantum circuits.
We envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
arXiv Detail & Related papers (2023-11-03T17:17:08Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.