論文の概要: ILETIA: An AI-enhanced method for individualized trigger-oocyte pickup interval estimation of progestin-primed ovarian stimulation protocol
- arxiv url: http://arxiv.org/abs/2501.16386v1
- Date: Sat, 25 Jan 2025 08:08:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:40:25.708319
- Title: ILETIA: An AI-enhanced method for individualized trigger-oocyte pickup interval estimation of progestin-primed ovarian stimulation protocol
- Title(参考訳): ILETIA : プロゲシン産生卵巣刺激プロトコルの単体化トリガ-卵細胞ピックアップ間隔推定のためのAI強化法
- Authors: Binjian Wu, Qian Li, Zhe Kuang, Hongyuan Gao, Xinyi Liu, Haiyan Guo, Qiuju Chen, Xinyi Liu, Yangruizhe Jiang, Yuqi Zhang, Jinyin Zha, Mingyu Li, Qiuhan Ren, Sishuo Feng, Haicang Zhang, Xuefeng Lu, Jian Zhang,
- Abstract要約: 体外受精胚移植(IVF-ET)は不妊症に対する最も一般的な治療法の1つである。
IVF-ETサイクルの間、トリガーショットと卵子ピックアップ(OPU)の時間間隔は卵胞成熟の重要な期間である。
本稿では,プロゲシンプリメード卵巣刺激(PPOS)プロトコルを施行した患者に対して,最適なトリガ-OPU間隔を予測できる最初の機械学習手法であるILETIAを提案する。
- 参考スコア(独自算出の注目度): 19.462250530822907
- License:
- Abstract: In vitro fertilization-embryo transfer (IVF-ET) stands as one of the most prevalent treatments for infertility. During an IVF-ET cycle, the time interval between trigger shot and oocyte pickup (OPU) is a pivotal period for follicular maturation, which determines mature oocytes yields and impacts the success of subsequent procedures. However, accurately predicting this interval is severely hindered by the variability of clinicians'experience that often leads to suboptimal oocyte retrieval rate. To address this challenge, we propose ILETIA, the first machine learning-based method that could predict the optimal trigger-OPU interval for patients receiving progestin-primed ovarian stimulation (PPOS) protocol. Specifically, ILETIA leverages a Transformer to learn representations from clinical tabular data, and then employs gradient-boosted trees for interval prediction. For model training and evaluating, we compiled a dataset PPOS-DS of nearly ten thousand patients receiving PPOS protocol, the largest such dataset to our knowledge. Experimental results demonstrate that our method achieves strong performance (AUROC = 0.889), outperforming both clinicians and other widely used computational models. Moreover, ILETIA also supports premature ovulation risk prediction in a specific OPU time (AUROC = 0.838). Collectively, by enabling more precise and individualized decisions, ILETIA has the potential to improve clinical outcomes and lay the foundation for future IVF-ET research.
- Abstract(参考訳): 体外受精胚移植(IVF-ET)は不妊症に対する最も一般的な治療法の1つである。
IVF-ETサイクルの間、トリガーショットと卵子のピックアップ(OPU)の間の時間間隔は卵胞成熟の重要な期間であり、成熟した卵子の産出を判断し、その後の処置の成功に影響を与える。
しかし, この間隔を正確に予測することは, 好中球検索率の低下につながる臨床医の経験の変動によって著しく阻害される。
この課題に対処するために,プロゲシンプリメード卵巣刺激(PPOS)プロトコルを施行した患者に対して,最適なトリガ-OPU間隔を予測できる,最初の機械学習ベースの手法であるILETIAを提案する。
具体的には、 ILETIA は Transformer を利用して、臨床表層データから表現を学習し、インターバル予測に勾配木を用いる。
モデルトレーニングと評価のために,PPOSプロトコルを受信した約1万人の患者を対象としたデータセットPPOS-DSを作成した。
実験の結果,AUROC = 0.889は臨床医と他の広く使われている計算モデルより優れていることがわかった。
さらに、ILETIAは特定のOPU時間(AUROC = 0.838)の早期排卵リスク予測もサポートする。
総合的に、より正確で個別化された決定を可能にすることで、ILETIAは臨床結果を改善し、将来のIVF-ET研究の基礎を築く可能性がある。
関連論文リスト
- Preictal Period Optimization for Deep Learning-Based Epileptic Seizure Prediction [0.0]
我々は頭皮脳波(EEG)信号を用いた発作予測のための競合的深層学習モデルを開発した。
オープンアクセス型CHB-MITデータセットを対象とした19名の小児患者を対象に,本モデルを訓練・評価した。
各患者のOPPを用いて、平均感度は99.31%、特異性は95.34%、AUCは99.35%、F1-スコアは97.46%と正しく同定された。
論文 参考訳(メタデータ) (2024-07-20T13:49:14Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
臨床試験は薬物開発に不可欠であるが、時間を要する、費用がかかる、失敗する傾向がある。
本稿では,まず,複数ソースの臨床試験データを関連するトライアルトピックにクラスタリングするために,臨床トライアル結果の逐次予測mOdeling(SPOT)を提案する。
タスクとして各トライアルシーケンスを考慮して、メタ学習戦略を使用して、モデルが最小限のアップデートで新しいタスクに迅速に適応できるポイントを達成する。
論文 参考訳(メタデータ) (2023-04-07T23:04:27Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Estimating average causal effects from patient trajectories [18.87912848546951]
医療実践においては、患者の結果に期待される因果効果に基づいて治療が選択される。
本稿では,時間とともに収集される観察データ(患者軌跡)から平均因果効果(ACE)を推定することを目的とする。
論文 参考訳(メタデータ) (2022-03-02T16:45:19Z) - Causal Effect Variational Autoencoder with Uniform Treatment [50.895390968371665]
因果効果変動オートエンコーダ(CEVAE)をトレーニングし、観察処理データから結果を予測する。
均一処理変分オートエンコーダ (UTVAE) は, 重要サンプリングを用いて均一な処理分布を訓練する。
論文 参考訳(メタデータ) (2021-11-16T17:40:57Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Robust and generalizable embryo selection based on artificial
intelligence and time-lapse image sequences [0.0]
経時変化画像のみを用いた深層学習に基づく胚選択モデルが、患者年齢や臨床条件によってどのように機能するかを検討する。
このモデルは、115,832個の胚からなる18のIVFセンターからの大規模なデータセットに基づいて訓練および評価された。
完全自動化されたiDAScore v1.0モデルは、少なくとも最先端の手動胚選択モデルと同じくらいの性能を示した。
論文 参考訳(メタデータ) (2021-03-12T13:36:30Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Estimating heterogeneous survival treatment effect in observational data
using machine learning [9.951103976634407]
観測データにおける不均一な処理効果を推定する方法は, 連続的あるいは二分的な結果に大きく焦点を絞っている。
対物的フレームワークで柔軟な機械学習手法を使用することは、複雑な個人特性による課題に対処するための有望なアプローチである。
論文 参考訳(メタデータ) (2020-08-17T01:02:14Z) - Data-Driven Prediction of Embryo Implantation Probability Using IVF
Time-lapse Imaging [4.823616680520791]
本稿では,胚発生時間ラプス画像から胚移植の確率を直接予測するために訓練された新しいデータ駆動システムについて述べる。
回顧的に収集した272個の胚のビデオを用いて, 胚学者の外部パネルと比較すると, 正の予測値が12%, 負の予測値が29%増加した。
論文 参考訳(メタデータ) (2020-06-01T16:04:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。