論文の概要: HopCast: Calibration of Autoregressive Dynamics Models
- arxiv url: http://arxiv.org/abs/2501.16587v1
- Date: Mon, 27 Jan 2025 23:59:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:05.146644
- Title: HopCast: Calibration of Autoregressive Dynamics Models
- Title(参考訳): HopCast: 自己回帰ダイナミクスモデルの校正
- Authors: Muhammad Bilal Shahid, Cody Fleming,
- Abstract要約: ディープラーニングモデルは、微分方程式を用いてモデル化できる力学系を近似するためにしばしば訓練される。
これらのモデルは、予測モデルが不確実性を定量化できれば、一歩先を予測し、キャリブレーションされた予測を生成するように最適化されている。
この研究は、マルチステップ予測のための深いアンサンブルを用いた校正誤差に基づいて、既存の不確実性伝搬法をベンチマークした最初のものである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep learning models are often trained to approximate dynamical systems that can be modeled using differential equations. These models are optimized to predict one step ahead and produce calibrated predictions if the predictive model can quantify uncertainty, such as deep ensembles. At inference time, multi-step predictions are generated via autoregression, which needs a sound uncertainty propagation method (e.g., Trajectory Sampling) to produce calibrated multi-step predictions. This paper introduces an approach named HopCast that uses the Modern Hopfield Network (MHN) to learn the residuals of a deterministic model that approximates the dynamical system. The MHN predicts the density of residuals based on a context vector at any timestep during autoregression. This approach produces calibrated multi-step predictions without uncertainty propagation and turns a deterministic model into a calibrated probabilistic model. This work is also the first to benchmark existing uncertainty propagation methods based on calibration errors with deep ensembles for multi-step predictions.
- Abstract(参考訳): ディープラーニングモデルは、微分方程式を用いてモデル化できる力学系を近似するためにしばしば訓練される。
これらのモデルは、深いアンサンブルのような不確実性を予測できるならば、一歩先を予測し、キャリブレーションされた予測を生成するように最適化されている。
推測時,多段階予測は自己回帰によって生成され,音の不確実性伝搬法(トラジェクトリサンプリングなど)が必要であり,校正された多段階予測を生成する。
本稿では,最新のホップフィールドネットワーク(MHN)を用いて,力学系を近似した決定論的モデルの残差を学習するHopCastという手法を提案する。
MHNは、自己回帰中の任意の時刻における文脈ベクトルに基づいて残差の密度を予測する。
このアプローチは、不確実な伝播を伴わない校正された多段階予測を生成し、決定論的モデルを校正確率モデルに変換する。
この研究は、マルチステップ予測のための深いアンサンブルを持つキャリブレーション誤差に基づいて、既存の不確実性伝搬法をベンチマークした最初のものである。
関連論文リスト
- Conformal online model aggregation [29.43493007296859]
本稿では,オンライン環境における共形モデルアグリゲーションへの新たなアプローチを提案する。
これは、過去の性能に基づいてモデルの重みが時間とともに適応される投票によって、いくつかのアルゴリズムの予測セットを組み合わせることに基づいている。
論文 参考訳(メタデータ) (2024-03-22T15:40:06Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
SIP(Sparse Implicit Processes)は,データ生成機構がモデルによって入力されるものと強く異なる場合,モデルバイアスを補正できることを示す。
合成データセットを用いて、SIPは、初期推定モデルの正確な予測よりもデータをよりよく反映する予測分布を提供することができることを示す。
論文 参考訳(メタデータ) (2022-07-21T18:00:01Z) - Autoregressive Quantile Flows for Predictive Uncertainty Estimation [7.184701179854522]
高次元変数上の確率モデルの柔軟なクラスである自己回帰量子フローを提案する。
これらのモデルは、適切なスコアリングルールに基づいて、新しい目的を用いて訓練された自己回帰フローの例である。
論文 参考訳(メタデータ) (2021-12-09T01:11:26Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Quantifying Model Predictive Uncertainty with Perturbation Theory [21.591460685054546]
本稿では,ニューラルネットワークの予測不確実性定量化のためのフレームワークを提案する。
量子物理学の摂動理論を用いてモーメント分解問題を定式化する。
我々の手法は、より高精度でキャリブレーションの高い高速なモデル予測不確実性推定を提供する。
論文 参考訳(メタデータ) (2021-09-22T17:55:09Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Quantile Regularization: Towards Implicit Calibration of Regression
Models [30.872605139672086]
2つのCDF間の累積KL分散として定義される新しい量子正規化器に基づく回帰モデルの校正法を提案する。
提案手法は,Dropout VI や Deep Ensembles といった手法を用いて学習した回帰モデルのキャリブレーションを大幅に改善することを示す。
論文 参考訳(メタデータ) (2020-02-28T16:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。