Quantum advantage in decentralized control of POMDPs: A control-theoretic view of the Mermin-Peres square
- URL: http://arxiv.org/abs/2501.16690v1
- Date: Tue, 28 Jan 2025 03:58:49 GMT
- Title: Quantum advantage in decentralized control of POMDPs: A control-theoretic view of the Mermin-Peres square
- Authors: Venkat Anantharam,
- Abstract summary: Consider a partially-observed Markov decision problem (POMDP) with multiple cooperative agents aiming to maximize a long-term-average reward criterion.<n>We observe that the availability, at a fixed rate, of entangled states of a product quantum system between the agents, can result in strictly improved performance.
- Score: 20.1243755755303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consider a decentralized partially-observed Markov decision problem (POMDP) with multiple cooperative agents aiming to maximize a long-term-average reward criterion. We observe that the availability, at a fixed rate, of entangled states of a product quantum system between the agents, where each agent has access to one of the component systems, can result in strictly improved performance even compared to the scenario where common randomness is provided to the agents, i.e. there is a quantum advantage in decentralized control. This observation comes from a simple reinterpretation of the conclusions of the well-known Mermin-Peres square, which underpins the Mermin-Peres game. While quantum advantage has been demonstrated earlier in one-shot team problems of this kind, it is notable that there are examples where there is a quantum advantage for the one-shot criterion but it disappears in the dynamical scenario. The presence of a quantum advantage in dynamical scenarios is thus seen to be a novel finding relative to the current state of knowledge about the achievable performance in decentralized control problems. This paper is dedicated to the memory of Pravin P. Varaiya.
Related papers
- State-Constrained Optimal Control for Coherence Preservation in Multi-Level Open Quantum Systems [1.4811951486536687]
This paper addresses the optimal control of quantum coherence in multi-level systems, modeled by the Lindblad master equation.
We develop an energy minimization framework to control the evolution of a qutrit (three-level) quantum system while preserving coherence between states.
arXiv Detail & Related papers (2024-11-16T16:53:56Z) - eQMARL: Entangled Quantum Multi-Agent Reinforcement Learning for Distributed Cooperation over Quantum Channels [98.314893665023]
Quantum computing has sparked a potential synergy between quantum entanglement and cooperation in multi-agent environments.
Current state-of-the-art quantum MARL (QMARL) implementations rely on classical information sharing.
eQMARL is a distributed actor-critic framework that facilitates cooperation over a quantum channel.
arXiv Detail & Related papers (2024-05-24T18:43:05Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Entanglement cost of discriminating quantum states under locality constraints [7.0937306686264625]
We show that a pure state can be optimally discriminated against any other state with the assistance of a single Bell state.
This study advances our understanding of the pivotal role played by entanglement in quantum state discrimination, serving as a crucial element in unlocking quantum data hiding against locally constrained measurements.
arXiv Detail & Related papers (2024-02-28T16:16:50Z) - Control landscape of measurement-assisted transition probability for a
three-level quantum system with dynamical symmetry [77.34726150561087]
Quantum systems with dynamical symmetries have conserved quantities which are preserved under coherent controls.
Incoherent control can increase the maximal attainable transition probability.
We show that all critical points are global maxima, global minima, saddle points and second order traps.
arXiv Detail & Related papers (2023-07-14T16:12:21Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Extremal quantum states [0.41998444721319206]
We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations.
The symmetry-transcending properties of the Husimi $Q$ function make it our basic tool.
We use these quantities to formulate extremal principles and determine in this way which states are the most and least "quantum"
arXiv Detail & Related papers (2020-10-09T18:00:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.