論文の概要: Standardised schema and taxonomy for AI incident databases in critical digital infrastructure
- arxiv url: http://arxiv.org/abs/2501.17037v1
- Date: Tue, 28 Jan 2025 15:59:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:42:59.594828
- Title: Standardised schema and taxonomy for AI incident databases in critical digital infrastructure
- Title(参考訳): 重要なデジタルインフラにおけるAIインシデントデータベースの標準化されたスキーマと分類
- Authors: Avinash Agarwal, Manisha J. Nene,
- Abstract要約: 重要なデジタルインフラストラクチャへの人工知能の迅速な展開は、重大なリスクをもたらす。
既存のデータベースには、一貫性のあるデータ収集と分析に必要な標準化された構造だけでなく、粒度も欠けている。
この研究は、AIインシデントデータベースのための標準化されたスキーマと分類を提案し、セクタ全体でAIインシデントの詳細と構造化されたドキュメントを可能にする。
- 参考スコア(独自算出の注目度): 2.209921757303168
- License:
- Abstract: The rapid deployment of Artificial Intelligence (AI) in critical digital infrastructure introduces significant risks, necessitating a robust framework for systematically collecting AI incident data to prevent future incidents. Existing databases lack the granularity as well as the standardized structure required for consistent data collection and analysis, impeding effective incident management. This work proposes a standardized schema and taxonomy for AI incident databases, addressing these challenges by enabling detailed and structured documentation of AI incidents across sectors. Key contributions include developing a unified schema, introducing new fields such as incident severity, causes, and harms caused, and proposing a taxonomy for classifying AI incidents in critical digital infrastructure. The proposed solution facilitates more effective incident data collection and analysis, thus supporting evidence-based policymaking, enhancing industry safety measures, and promoting transparency. This work lays the foundation for a coordinated global response to AI incidents, ensuring trust, safety, and accountability in using AI across regions.
- Abstract(参考訳): 重要なデジタルインフラストラクチャへの人工知能(AI)の迅速な展開は大きなリスクをもたらし、将来のインシデントを防ぐために、AIインシデントデータを体系的に収集する堅牢なフレームワークを必要とする。
既存のデータベースは、一貫性のあるデータ収集と分析に必要な標準化された構造だけでなく、粒度も欠如しており、効果的なインシデント管理を妨げる。
この研究は、AIインシデントデータベースの標準化されたスキーマと分類を提案し、セクタ全体でAIインシデントに関する詳細な構造化されたドキュメントを提供することによって、これらの課題に対処する。
主な貢献は、統合スキーマの開発、インシデント重大性、原因、障害などの新しい分野の導入、重要なデジタルインフラストラクチャにおけるAIインシデントを分類するための分類の提案などである。
提案手法は、より効果的なインシデントデータ収集と分析を促進し、エビデンスベースのポリシー作成、産業安全対策の強化、透明性の促進を支援する。
この研究は、AIインシデントに対するコーディネートされたグローバルな対応の基礎を築き、リージョン間でAIを使用する際の信頼性、安全性、説明責任を保証する。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - A Survey on Vulnerability Prioritization: Taxonomy, Metrics, and Research Challenges [20.407534993667607]
リソース制約は効果的な脆弱性優先順位付け戦略を必要とする。
本稿では,メトリクスを重大度,悪用性,文脈要因,予測指標,集約手法に分類する新しい分類法を提案する。
論文 参考訳(メタデータ) (2025-02-16T10:33:37Z) - Safety at Scale: A Comprehensive Survey of Large Model Safety [299.801463557549]
我々は、敵攻撃、データ中毒、バックドア攻撃、ジェイルブレイクとプロンプトインジェクション攻撃、エネルギー遅延攻撃、データとモデル抽出攻撃、出現するエージェント固有の脅威を含む、大規模なモデルに対する安全脅威の包括的分類を提示する。
我々は、大規模なモデル安全性におけるオープンな課題を特定し、議論し、包括的な安全性評価、スケーラブルで効果的な防御機構、持続可能なデータプラクティスの必要性を強調します。
論文 参考訳(メタデータ) (2025-02-02T05:14:22Z) - Lessons for Editors of AI Incidents from the AI Incident Database [2.5165775267615205]
AIインシデントデータベース(AIID)は、AIインシデントをカタログ化し、インシデントを分類するプラットフォームを提供することでさらなる研究を支援するプロジェクトである。
この研究は、AIIDの750以上のAIインシデントのデータセットと、これらのインシデントに適用された2つの独立した曖昧さをレビューし、AIインシデントをインデックス化し分析する一般的な課題を特定する。
我々は、インシデントプロセスが原因、害の程度、重大さ、あるいは関連するシステムの技術的詳細に関連する不確実性に対してより堅牢になるよう、軽減策を報告する。
論文 参考訳(メタデータ) (2024-09-24T19:46:58Z) - Integrative Approaches in Cybersecurity and AI [0.0]
組織がデータを保護し、分析し、活用する方法に革命をもたらす可能性を秘めている重要なトレンド、課題、将来の方向性を特定します。
私たちの発見は、AI駆動の自動化、リアルタイム脅威検出、高度なデータ分析を取り入れて、よりレジリエンスで適応的なセキュリティアーキテクチャを構築するための、学際的な戦略の必要性を強調しています。
論文 参考訳(メタデータ) (2024-08-12T01:37:06Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - Coordinated Flaw Disclosure for AI: Beyond Security Vulnerabilities [1.3225694028747144]
本稿では,機械学習(ML)問題の複雑度に合わせたコーディネート・フレーバー開示フレームワークを提案する。
本フレームワークは,拡張モデルカード,ダイナミックスコープ拡張,独立適応パネル,自動検証プロセスなどのイノベーションを導入している。
CFDはAIシステムに対する公的な信頼を著しく向上させる可能性があると我々は主張する。
論文 参考訳(メタデータ) (2024-02-10T20:39:04Z) - RANK: AI-assisted End-to-End Architecture for Detecting Persistent
Attacks in Enterprise Networks [2.294014185517203]
APT(Advanced Persistent Threats)検出のためのエンドツーエンドAI支援アーキテクチャを提案する。
アーキテクチャは、1アラートテンプレートとマージ、2アラートグラフの構築、3アラートグラフをインシデントに分割、4インシデントスコアリングと順序付けの4つの連続したステップで構成されています。
分析対象のデータの3桁の削減,イシデントの革新的な抽出,抽出したインシデントのセキュリティ面でのスコア付けなど,広範な結果が得られた。
論文 参考訳(メタデータ) (2021-01-06T15:59:51Z) - Predicting Themes within Complex Unstructured Texts: A Case Study on
Safeguarding Reports [66.39150945184683]
本稿では,教師付き分類手法を用いた保護レポートにおいて,主テーマの自動識別の問題に焦点をあてる。
この結果から,ラベル付きデータに制限のある複雑なタスクであっても,深層学習モデルが対象知識の振る舞いをシミュレートする可能性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T19:48:23Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。