論文の概要: Multi-Physics Simulations via Coupled Fourier Neural Operator
- arxiv url: http://arxiv.org/abs/2501.17296v1
- Date: Tue, 28 Jan 2025 20:58:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:54:30.667490
- Title: Multi-Physics Simulations via Coupled Fourier Neural Operator
- Title(参考訳): 結合フーリエニューラル演算子によるマルチ物理シミュレーション
- Authors: Shibo Li, Tao Wang, Yifei Sun, Heiwei Tang,
- Abstract要約: 複数の物理プロセス間の相互作用をモデル化するための,新しい結合型多物理ニューラル演算子学習(COMPOL)フレームワークを提案する。
提案手法は,繰り返し及び注意機構による特徴集約を実装し,相互作用の包括的モデリングを可能にする。
提案モデルでは,既存手法に比べて予測性能が2~3倍向上したことを示す。
- 参考スコア(独自算出の注目度): 9.839064047196114
- License:
- Abstract: Physical simulations are essential tools across critical fields such as mechanical and aerospace engineering, chemistry, meteorology, etc. While neural operators, particularly the Fourier Neural Operator (FNO), have shown promise in predicting simulation results with impressive performance and efficiency, they face limitations when handling real-world scenarios involving coupled multi-physics outputs. Current neural operator methods either overlook the correlations between multiple physical processes or employ simplistic architectures that inadequately capture these relationships. To overcome these challenges, we introduce a novel coupled multi-physics neural operator learning (COMPOL) framework that extends the capabilities of Fourier operator layers to model interactions among multiple physical processes. Our approach implements feature aggregation through recurrent and attention mechanisms, enabling comprehensive modeling of coupled interactions. Our method's core is an innovative system for aggregating latent features from multi-physics processes. These aggregated features serve as enriched information sources for neural operator layers, allowing our framework to capture complex physical relationships accurately. We evaluated our coupled multi-physics neural operator across diverse physical simulation tasks, including biological systems, fluid mechanics, and multiphase flow in porous media. Our proposed model demonstrates a two to three-fold improvement in predictive performance compared to existing approaches.
- Abstract(参考訳): 物理シミュレーションは、機械工学や航空宇宙工学、化学、気象学など、重要な分野にまたがる重要なツールである。
ニューラル演算子、特にフーリエニューラル演算子(FNO)は、優れたパフォーマンスと効率でシミュレーション結果を予測することを約束しているが、複数の物理出力を結合した実世界のシナリオを扱う場合、制限に直面している。
現在のニューラル演算子は、複数の物理プロセス間の相関を見落としているか、あるいはこれらの関係を適切に捉えていない単純なアーキテクチャを採用する。
これらの課題を克服するために、Fourier演算子層の能力を拡張し、複数の物理プロセス間の相互作用をモデル化する、結合型多物理ニューラル演算子学習(COMPOL)フレームワークを導入する。
提案手法は,繰り返し及び注意機構による特徴集約を実装し,相互作用の包括的モデリングを可能にする。
提案手法のコアは,多物理プロセスから潜在特徴を集約する革新的なシステムである。
これらの集約された機能は、ニューラルネットワーク層のための豊富な情報源として機能し、我々のフレームワークは複雑な物理的関係を正確に捉えることができる。
多孔質媒質中の生体システム,流体力学,多相流など,様々な物理シミュレーションタスクにおける結合型多体神経オペレータの評価を行った。
提案モデルでは,既存手法に比べて予測性能が2~3倍向上したことを示す。
関連論文リスト
- NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements [7.704598780320887]
本研究では、PINNと高忠実度スペクトル要素法(SEM)を融合したハイブリッドフレームワークであるNeuroSEMを紹介した。
NeuroSEMはPINNとSEMの両方の強度を活用し、多物理問題に対する堅牢な解決策を提供する。
キャビティフローおよびシリンダーを過ぎる流れにおける熱対流に対するNeuroSEMの有効性と精度を実証した。
論文 参考訳(メタデータ) (2024-07-30T22:01:14Z) - Dynamical Mean-Field Theory of Self-Attention Neural Networks [0.0]
トランスフォーマーベースのモデルは、様々な領域で例外的な性能を示している。
動作方法や期待されるダイナミクスについてはほとんど分かっていない。
非平衡状態における非対称ホップフィールドネットワークの研究に手法を用いる。
論文 参考訳(メタデータ) (2024-06-11T13:29:34Z) - Bond Graphs for multi-physics informed Neural Networks for multi-variate time series [6.775534755081169]
既存の手法は複雑な多分野・多領域現象のタスクには適用されない。
タスク固有モデルに入力可能な多物理インフォームド表現を生成するニューラルボンドグラフ(NBgE)を提案する。
論文 参考訳(メタデータ) (2024-05-22T12:30:25Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
入力パラメータのトレーニング可能な関数を用いて条件パラメトリゼーションの考え方を一般化する。
条件パラメータ化ネットワークは従来のネットワークに比べて優れた性能を示すことを示す。
CP-GNetと呼ばれるネットワークアーキテクチャも、メッシュ上のフローのスタンドアロン予測に反応可能な最初のディープラーニングモデルとして提案されている。
論文 参考訳(メタデータ) (2021-09-15T20:21:13Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
高忠実度分子シミュレーションデータから連続体モデルを発見するためのフレームワークを提案する。
提案手法は、モーダル空間における制御物理のニューラルネットワークパラメタライゼーションを適用する。
局所・非局所拡散過程や単相・多相流など,様々な物理分野におけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-09-25T01:13:51Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。