論文の概要: From tools to thieves: Measuring and understanding public perceptions of AI through crowdsourced metaphors
- arxiv url: http://arxiv.org/abs/2501.18045v1
- Date: Wed, 29 Jan 2025 23:17:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:15:53.649563
- Title: From tools to thieves: Measuring and understanding public perceptions of AI through crowdsourced metaphors
- Title(参考訳): ツールから泥棒へ:クラウドソースのメタファを通してAIの公的な認識を測定し、理解する
- Authors: Myra Cheng, Angela Y. Lee, Kristina Rapuano, Kate Niederhoffer, Alex Liebscher, Jeffrey Hancock,
- Abstract要約: 我々は、AIの公的な理解を形成する20の支配的なメタファーを特定します。
アメリカ人は一般的にAIを温かくて有能だと考えている。
これらの暗黙の認識は、特定された支配的なメタファーと共に、AIの採用への信頼と意欲を強く予測する。
- 参考スコア(独自算出の注目度): 1.2461369993945386
- License:
- Abstract: How has the public responded to the increasing prevalence of artificial intelligence (AI)-based technologies? We investigate public perceptions of AI by collecting over 12,000 responses over 12 months from a nationally representative U.S. sample. Participants provided open-ended metaphors reflecting their mental models of AI, a methodology that overcomes the limitations of traditional self-reported measures. Using a mixed-methods approach combining quantitative clustering and qualitative coding, we identify 20 dominant metaphors shaping public understanding of AI. To analyze these metaphors systematically, we present a scalable framework integrating language modeling (LM)-based techniques to measure key dimensions of public perception: anthropomorphism (attribution of human-like qualities), warmth, and competence. We find that Americans generally view AI as warm and competent, and that over the past year, perceptions of AI's human-likeness and warmth have significantly increased ($+34\%, r = 0.80, p < 0.01; +41\%, r = 0.62, p < 0.05$). Furthermore, these implicit perceptions, along with the identified dominant metaphors, strongly predict trust in and willingness to adopt AI ($r^2 = 0.21, 0.18, p < 0.001$). We further explore how differences in metaphors and implicit perceptions--such as the higher propensity of women, older individuals, and people of color to anthropomorphize AI--shed light on demographic disparities in trust and adoption. In addition to our dataset and framework for tracking evolving public attitudes, we provide actionable insights on using metaphors for inclusive and responsible AI development.
- Abstract(参考訳): 人工知能(AI)ベースの技術の普及に対して、大衆はどのように反応したのか?
我々は、米国代表のサンプルから12ヶ月間に12,000件以上の回答を収集することで、AIに対する一般の認識を調査する。
参加者は、従来の自己申告された尺度の限界を克服する方法論である、AIのメンタルモデルを反映したオープンエンドのメタファーを提供した。
定量的クラスタリングと定性的なコーディングを組み合わせた混合メソッドアプローチを用いて、AIの公的な理解を形成する20の支配的なメタファを識別する。
これらのメタファーを体系的に分析するために,言語モデリング(LM)に基づく手法を統合したスケーラブルなフレームワークを提案する。
アメリカ人は一般的にAIを温かくて有能であるとみなし、この1年間で、AIの人間的類似性や温かさに対する認識が著しく増加した(+34\%、r = 0.80、p < 0.01; +41\%、r = 0.62、p < 0.05$)。
さらに、これらの暗黙の認識は、特定された支配的な比喩と共に、AIの採用への信頼と意欲を強く予測する(r^2 = 0.21, 0.18, p < 0.001$)。
さらに、比喩と暗黙の知覚の違い(女性、高齢者、有色人種がAIを人為的に形作ること)が、信頼と養子縁組における人口格差に光を当てているかについても検討する。
公衆の態度の進化を追跡するためのデータセットとフレームワークに加えて、包括的で責任あるAI開発のためのメタファーの使用に関する実用的な洞察を提供する。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Human-Modeling in Sequential Decision-Making: An Analysis through the Lens of Human-Aware AI [20.21053807133341]
私たちは、人間を意識したAIシステムを構成するものの説明を提供しようとしています。
人間を意識したAIはデザイン指向のパラダイムであり、人間と対話するかもしれないモデリングの必要性に焦点を当てている。
論文 参考訳(メタデータ) (2024-05-13T14:17:52Z) - Assistant, Parrot, or Colonizing Loudspeaker? ChatGPT Metaphors for
Developing Critical AI Literacies [0.9012198585960443]
本研究は,AIシステムの理解を形作るフレームの認識を構築する上で,AIのメタファの議論がいかに役立つかを考察する。
様々な情報源からメタファーを分析し、7つの質問に答えて個別に反映した。
我々は、それが人為的形態化を促進するかどうかの次元に沿って、それぞれの比喩を探索し、そのような比喩がどの程度AIがセンシティブであるかを示唆した。
論文 参考訳(メタデータ) (2024-01-15T15:15:48Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - The Response Shift Paradigm to Quantify Human Trust in AI
Recommendations [6.652641137999891]
説明可能性、解釈可能性、そしてそれらがAIシステムに対する人間の信頼にどれほど影響するかは、究極的には機械学習と同じくらいの人間の認知の問題である。
我々は,AIレコメンデーションが人的決定に与える影響を定量化する汎用のヒューマン・AIインタラクション・パラダイムを開発し,検証した。
我々の実証・実証パラダイムは、急速に成長するXAI/IAIアプローチをエンドユーザーへの影響の観点から定量的に比較することができる。
論文 参考訳(メタデータ) (2022-02-16T22:02:09Z) - Uncalibrated Models Can Improve Human-AI Collaboration [10.106324182884068]
私たちは、AIモデルを実際によりも自信を持って提示することで、人間-AIのパフォーマンスが向上することを示した。
私たちはまず、何千もの人間のインタラクションのデータを使って、人間がAIアドバイスを組み込む方法のモデルを学びます。
論文 参考訳(メタデータ) (2022-02-12T04:51:00Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Human Evaluation of Interpretability: The Case of AI-Generated Music
Knowledge [19.508678969335882]
我々は、芸術と人文科学におけるAIが発見する知識/ルールを評価することに注力する。
本稿では,洗練された記号的/数値的対象として表現されたAI生成音楽理論/ルールの人間生成言語解釈を収集し,評価する実験手法を提案する。
論文 参考訳(メタデータ) (2020-04-15T06:03:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。