論文の概要: Learning Provablely Improves the Convergence of Gradient Descent
- arxiv url: http://arxiv.org/abs/2501.18092v1
- Date: Thu, 30 Jan 2025 02:03:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:13:58.051437
- Title: Learning Provablely Improves the Convergence of Gradient Descent
- Title(参考訳): 学習がグラディエントDescentの収束性を改善する
- Authors: Qingyu Song, Wei Lin, Hong Xu,
- Abstract要約: 本稿では,学習者によるL2O(Learning to Optimize)問題の収束について検討する。
アルゴリズムの接点により、L2Oの収束が著しく向上する。
以上の結果から,GD法では50%の成績を示した。
- 参考スコア(独自算出の注目度): 9.82454981262489
- License:
- Abstract: As a specialized branch of deep learning, Learning to Optimize (L2O) tackles optimization problems by training DNN-based solvers. Despite achieving significant success in various scenarios, such as faster convergence in solving convex optimizations and improved optimality in addressing non-convex cases, there remains a deficiency in theoretical support. Current research heavily relies on stringent assumptions that do not align with the intricacies of the training process. To address this gap, our study aims to establish L2O's convergence through its training methodology. We demonstrate that learning an algorithm's hyperparameters significantly enhances its convergence. Focusing on the gradient descent (GD) algorithm for quadratic programming, we prove the convergence of L2O's training using the neural tangent kernel theory. Moreover, we conduct empirical evaluations using synthetic datasets. Our findings indicate exceeding 50\% outperformance over the GD methods.
- Abstract(参考訳): ディープラーニングの専門分野として、L2O(Learning to Optimize)は、DNNベースの問題解決者を訓練することによって最適化問題に取り組む。
凸最適化の高速化や非凸問題に対処する際の最適性の改善など、様々なシナリオにおいて大きな成功を収めたにもかかわらず、理論的支援には不足が残っている。
現在の研究は、トレーニングプロセスの複雑さと一致しない厳密な仮定に大きく依存している。
このギャップに対処するため,本研究はL2Oの学習手法による収束を確立することを目的としている。
アルゴリズムのハイパーパラメータの学習は,その収束性を大幅に向上させることを示す。
2次プログラミングのための勾配降下法(GD)アルゴリズムに着目し,ニューラルタンジェントカーネル理論を用いたL2Oの学習の収束性を証明する。
さらに,合成データセットを用いた経験的評価を行った。
以上の結果から,GD法よりも50%以上の成績を示した。
関連論文リスト
- An Automatic Learning Rate Schedule Algorithm for Achieving Faster
Convergence and Steeper Descent [10.061799286306163]
実世界のニューラルネットワーク最適化におけるデルタバーデルタアルゴリズムの収束挙動について検討する。
RDBD(Regrettable Delta-Bar-Delta)と呼ばれる新しい手法を提案する。
提案手法は,バイアス付き学習率調整の迅速な修正を可能にし,最適化プロセスの収束を保証する。
論文 参考訳(メタデータ) (2023-10-17T14:15:57Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Versatile Single-Loop Method for Gradient Estimator: First and Second
Order Optimality, and its Application to Federated Learning [45.78238792836363]
本稿では,SLEDGE (Single-Loop-E Gradient Estimator) という単一ループアルゴリズムを提案する。
既存の手法とは異なり、SLEDGEは、(ii)2階最適、(ii)PL領域における、(iii)少ないデータ以下の複雑さの利点を持つ。
論文 参考訳(メタデータ) (2022-09-01T11:05:26Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Learning to Optimize: A Primer and A Benchmark [94.29436694770953]
最適化への学習(L2O)は、機械学習を活用して最適化方法を開発する新しいアプローチです。
この記事では、継続的最適化のためのL2Oの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2021-03-23T20:46:20Z) - Gradient Descent Averaging and Primal-dual Averaging for Strongly Convex
Optimization [15.731908248435348]
強凸の場合の勾配降下平均化と主双進平均化アルゴリズムを開発する。
一次二重平均化は出力平均化の観点から最適な収束率を導出し、SC-PDAは最適な個々の収束を導出する。
SVMとディープラーニングモデルに関するいくつかの実験は、理論解析の正確性とアルゴリズムの有効性を検証する。
論文 参考訳(メタデータ) (2020-12-29T01:40:30Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods
to Deep Binary Model [34.093978443640616]
最近のBNN(Binary Neural Networks)の性能は大幅に低下している。
BNNの効果的かつ効率的なトレーニングを保証することは未解決の問題である。
そこで本研究では,BAMSProdアルゴリズムを用いて,深部二元モデルの収束特性が量子化誤差と強く関連していることを示す。
論文 参考訳(メタデータ) (2020-09-29T06:12:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。