論文の概要: DeepFRC: An End-to-End Deep Learning Model for Functional Registration and Classification
- arxiv url: http://arxiv.org/abs/2501.18116v1
- Date: Thu, 30 Jan 2025 03:35:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:15:45.209886
- Title: DeepFRC: An End-to-End Deep Learning Model for Functional Registration and Classification
- Title(参考訳): DeepFRC: 機能登録と分類のためのエンドツーエンドディープラーニングモデル
- Authors: Siyuan Jiang, Yihan Hu, Wenjie Li, Pengcheng Zeng,
- Abstract要約: 機能的データ分析(FDA)は、連続した高次元のデータを分析するのに不可欠である。
DeepFRCはエンドツーエンドのディープラーニングフレームワークで、これらのタスクを単一のモデルに統合します。
実世界のデータセットの実験では、DeepFRCが最先端の手法を一貫して上回っていることが示されている。
- 参考スコア(独自算出の注目度): 6.365405684671285
- License:
- Abstract: Functional data analysis (FDA) is essential for analyzing continuous, high-dimensional data, yet existing methods often decouple functional registration and classification, limiting their efficiency and performance. We present DeepFRC, an end-to-end deep learning framework that unifies these tasks within a single model. Our approach incorporates an alignment module that learns time warping functions via elastic function registration and a learnable basis representation module for dimensionality reduction on aligned data. This integration enhances both alignment accuracy and predictive performance. Theoretical analysis establishes that DeepFRC achieves low misalignment and generalization error, while simulations elucidate the progression of registration, reconstruction, and classification during training. Experiments on real-world datasets demonstrate that DeepFRC consistently outperforms state-of-the-art methods, particularly in addressing complex registration challenges. Code is available at: https://github.com/Drivergo-93589/DeepFRC.
- Abstract(参考訳): 機能的データ分析(FDA)は、連続した高次元のデータを分析するのに不可欠であるが、既存の方法は、しばしば機能的登録と分類を分離し、その効率と性能を制限している。
DeepFRCはエンドツーエンドのディープラーニングフレームワークで、これらのタスクを単一のモデルに統合します。
提案手法では,弾性関数登録による時間ゆらぎ関数の学習を行うアライメントモジュールと,アライメントデータの次元的低減のための学習可能な基底表現モジュールを組み込んだ。
この統合により、アライメント精度と予測性能が向上する。
理論的解析により、DeepFRCは、トレーニング中の登録、再構築、分類の進行を解明する一方で、低いミスアライメントと一般化誤差を達成することが確認される。
実世界のデータセットの実験では、DeepFRCは、特に複雑な登録課題に対処する上で、最先端の手法を一貫して上回っていることが示されている。
コードは、https://github.com/Drivergo-93589/DeepFRCで入手できる。
関連論文リスト
- Simulation-Free Training of Neural ODEs on Paired Data [20.36333430055869]
我々は,NODEのシミュレーションフリートレーニングにフローマッチングフレームワークを用いる。
ペアデータ間で直接フローマッチングを適用することは、しばしば不定義のフローにつながることを示す。
データペアの埋め込み空間にフローマッチングを適用するための簡単な拡張を提案する。
論文 参考訳(メタデータ) (2024-10-30T11:18:27Z) - TemporalPaD: a reinforcement-learning framework for temporal feature representation and dimension reduction [10.765457133033435]
この研究は、時間パターンデータセット用に設計された新しいエンドツーエンドのディープラーニングフレームワークであるTemporalPaDを紹介する。
フレームワークは、ポリシーモジュール、表現モジュール、分類モジュールの3つの協調モジュールで構成されている。
29のUCIデータセットを用いてTemporalPaDを総合的に評価した。
論文 参考訳(メタデータ) (2024-09-27T09:56:20Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Distributed Gradient Descent for Functional Learning [9.81463654618448]
我々は,カーネルヒルベルト空間を再現するフレームワークにおいて,多数のローカルマシン(プロセッサ)にまたがる関数データに取り組むために,分散勾配勾配関数学習(DGDFL)アルゴリズムを提案する。
軽度条件下では、DGDFLの信頼に基づく最適学習速度は、機能回帰における以前の研究で被った正則性指数の飽和境界を伴わずに得られる。
論文 参考訳(メタデータ) (2023-05-12T12:15:42Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
我々は,多次元関数型データを分類するFDNN(Functional Deep Neural Network)と呼ばれる新しい手法を提案する。
具体的には、将来のデータ関数のクラスラベルを予測するために使用されるトレーニングデータの原則コンポーネントに基づいて、ディープニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2022-05-17T19:22:48Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
ドメイン分類は自然言語理解(NLU)の基本課題である
既存の継続的な学習アプローチの多くは、低い精度とパフォーマンスの変動に悩まされている。
本研究では,テキストデータに対するパラメータフリー連続学習モデルを提案する。
論文 参考訳(メタデータ) (2022-01-05T02:46:16Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
画像中の深層学習に基づくサラエント物体検出を容易にするプログレッシブ自己誘導損失関数を提案する。
我々のフレームワークは適応的に集約されたマルチスケール機能を利用して、健全な物体の探索と検出を効果的に行う。
論文 参考訳(メタデータ) (2021-01-07T07:33:38Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - Feature space approximation for kernel-based supervised learning [2.653409741248232]
目標は、トレーニングデータのサイズを減らし、ストレージ消費と計算の複雑さを減らすことだ。
完全トレーニングデータセットを含むデータ駆動予測の計算と比較して,大幅な改善が示された。
本手法は, 画像認識, システム識別, 海洋時系列解析などの異なる応用領域の分類と回帰問題に適用する。
論文 参考訳(メタデータ) (2020-11-25T11:23:58Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
Inference-aware Feature Filtering (IFF)モジュールを導入し、現代の検出器と簡単に組み合わせることができる。
IFFは、畳み込み機能を強化するためにハイレベルなセマンティクスを活用することでクローズドループ最適化を行う。
IFFはCNNベースの物体検出器とプラグアンドプレイ方式で融合でき、計算コストのオーバーヘッドは無視できる。
論文 参考訳(メタデータ) (2020-06-23T02:57:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。