Real-Time Anomaly Detection with Synthetic Anomaly Monitoring (SAM)
- URL: http://arxiv.org/abs/2501.18417v2
- Date: Mon, 03 Feb 2025 12:12:21 GMT
- Title: Real-Time Anomaly Detection with Synthetic Anomaly Monitoring (SAM)
- Authors: Emanuele Luzio, Moacir Antonelli Ponti,
- Abstract summary: Anomaly detection is essential for identifying rare and significant events across diverse domains such as finance, cybersecurity, and network monitoring.
This paper presents Synthetic Anomaly Monitoring (SAM), an innovative approach that applies synthetic control methods from causal inference to improve the accuracy and interpretability of anomaly detection processes.
- Score: 2.055524866851853
- License:
- Abstract: Anomaly detection is essential for identifying rare and significant events across diverse domains such as finance, cybersecurity, and network monitoring. This paper presents Synthetic Anomaly Monitoring (SAM), an innovative approach that applies synthetic control methods from causal inference to improve both the accuracy and interpretability of anomaly detection processes. By modeling normal behavior through the treatment of each feature as a control unit, SAM identifies anomalies as deviations within this causal framework. We conducted extensive experiments comparing SAM with established benchmark models, including Isolation Forest, Local Outlier Factor (LOF), k-Nearest Neighbors (kNN), and One-Class Support Vector Machine (SVM), across five diverse datasets, including Credit Card Fraud, HTTP Dataset CSIC 2010, and KDD Cup 1999, among others. Our results demonstrate that SAM consistently delivers robust performance, highlighting its potential as a powerful tool for real-time anomaly detection in dynamic and complex environments.
Related papers
- Enhanced Anomaly Detection in IoMT Networks using Ensemble AI Models on the CICIoMT2024 Dataset [0.7753092380426906]
The rapid proliferation of Internet of Medical Things (IoMT) devices in healthcare has introduced unique cybersecurity challenges.
This research aims to develop an advanced, real-time anomaly detection framework tailored for IoMT network traffic.
arXiv Detail & Related papers (2025-02-17T14:46:58Z) - Transformer-based Multivariate Time Series Anomaly Localization [5.554794295879246]
Space-Time Anomaly Score (STAS) is a new metric inspired by the connection between transformer latent representations and space-time statistical models.
Statistical Feature Anomaly Score (SFAS) complements STAS by analyzing statistical features around anomalies, with their combination helping to reduce false alarms.
Experiments on real world and synthetic datasets illustrate the model's superiority over state-of-the-art methods in both detection and localization tasks.
arXiv Detail & Related papers (2025-01-15T07:18:51Z) - PolSAM: Polarimetric Scattering Mechanism Informed Segment Anything Model [76.95536611263356]
PolSAR data presents unique challenges due to its rich and complex characteristics.
Existing data representations, such as complex-valued data, polarimetric features, and amplitude images, are widely used.
Most feature extraction networks for PolSAR are small, limiting their ability to capture features effectively.
We propose the Polarimetric Scattering Mechanism-Informed SAM (PolSAM), an enhanced Segment Anything Model (SAM) that integrates domain-specific scattering characteristics and a novel prompt generation strategy.
arXiv Detail & Related papers (2024-12-17T09:59:53Z) - Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning [63.55145330447408]
We propose a novel textbfSelf-textbfPerceptinon textbfTuning (textbfSPT) method for anomaly segmentation.
The SPT method incorporates a self-drafting tuning strategy, which generates an initial coarse draft of the anomaly mask, followed by a refinement process.
arXiv Detail & Related papers (2024-11-26T08:33:25Z) - LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery [2.4305626489408465]
We propose local search in additive noise models, LoSAM, for learning a unique DAG in ANMs with mixed causal mechanisms and general noise distributions.
We prove consistency and runtime, ensuring scalability and sample efficiency.
We test LoSAM on synthetic and real-world data, demonstrating state-of-the-art performance across all mixed mechanism settings.
arXiv Detail & Related papers (2024-10-15T16:28:55Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - Towards Evaluating the Robustness of Visual State Space Models [63.14954591606638]
Vision State Space Models (VSSMs) have demonstrated remarkable performance in visual perception tasks.
However, their robustness under natural and adversarial perturbations remains a critical concern.
We present a comprehensive evaluation of VSSMs' robustness under various perturbation scenarios.
arXiv Detail & Related papers (2024-06-13T17:59:44Z) - HCL-MTSAD: Hierarchical Contrastive Consistency Learning for Accurate Detection of Industrial Multivariate Time Series Anomalies [4.806959791183183]
We propose a novel self-supervised hierarchical contrastive consistency learning method for detecting anomalies in industrial MTS.
By developing a multi-layer contrastive loss, HCL-MTSAD can extensively mine data consistency and timestamp-temporal association.
Experiments conducted on six diverse MTS retrieved from real cyber-physical systems and server machines, indicate that HCL-MTSAD's anomaly detection capability outperforms the state-of-the-art benchmark models by an average of 1.8% in terms of F1 score.
arXiv Detail & Related papers (2024-04-12T03:39:33Z) - On the Robustness of Segment Anything [46.669794757467166]
We aim to study the testing-time robustness of SAM under adversarial scenarios and common corruptions.
We find that SAM exhibits remarkable robustness against various corruptions, except for blur-related corruption.
arXiv Detail & Related papers (2023-05-25T16:28:30Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.