Machine Learning Strategies for Parkinson Tremor Classification Using Wearable Sensor Data
- URL: http://arxiv.org/abs/2501.18671v1
- Date: Thu, 30 Jan 2025 18:36:59 GMT
- Title: Machine Learning Strategies for Parkinson Tremor Classification Using Wearable Sensor Data
- Authors: Jesus Paucar-Escalante, Matheus Alves da Silva, Bruno De Lima Sanches, Aurea Soriano-Vargas, Laura Silveira Moriyama, Esther Luna Colombini,
- Abstract summary: Machine learning (ML) has emerged as a powerful tool to enhance PD classification and diagnostic accuracy.
This survey comprehensively reviews current ML methodologies used in classifying Parkinsonian tremors.
We discuss challenges and discrepancies in current research and broader challenges in applying ML to PD diagnosis using wearable sensor data.
- Score: 0.4222205362654437
- License:
- Abstract: Parkinson's disease (PD) is a neurological disorder requiring early and accurate diagnosis for effective management. Machine learning (ML) has emerged as a powerful tool to enhance PD classification and diagnostic accuracy, particularly by leveraging wearable sensor data. This survey comprehensively reviews current ML methodologies used in classifying Parkinsonian tremors, evaluating various tremor data acquisition methodologies, signal preprocessing techniques, and feature selection methods across time and frequency domains, highlighting practical approaches for tremor classification. The survey explores ML models utilized in existing studies, ranging from traditional methods such as Support Vector Machines (SVM) and Random Forests to advanced deep learning architectures like Convolutional Neural Networks (CNN) and Long Short-Term Memory networks (LSTM). We assess the efficacy of these models in classifying tremor patterns associated with PD, considering their strengths and limitations. Furthermore, we discuss challenges and discrepancies in current research and broader challenges in applying ML to PD diagnosis using wearable sensor data. We also outline future research directions to advance ML applications in PD diagnostics, providing insights for researchers and practitioners.
Related papers
- Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Exploring Machine Learning Algorithms for Infection Detection Using GC-IMS Data: A Preliminary Study [2.4961885884659987]
Our research aims to tackle the ongoing issue of precise infection identification.
By utilizing Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) data and incorporating machine learning algorithms into one platform, our research aims to tackle the issue.
arXiv Detail & Related papers (2024-04-24T09:25:16Z) - Analysis, Identification and Prediction of Parkinson Disease Sub-Types and Progression through Machine Learning [5.982922468400901]
This paper represents a groundbreaking advancement in Parkinson disease (PD) research by employing a novel machine learning framework to categorize PD into distinct subtypes and predict its progression.
This innovative approach enables the identification of subtle, yet critical, patterns in PD manifestation, which traditional methodologies often miss.
arXiv Detail & Related papers (2023-06-07T19:54:56Z) - A Light-weight CNN Model for Efficient Parkinson's Disease Diagnostics [1.382077805849933]
The proposed model consists of a convolution neural network (CNN) to short-term memory (LSTM) to adapt the characteristics of collected time-series signals.
Experimental results show that the proposed model achieves a high-quality diagnostic result over multiple evaluation metrics with much fewer parameters and operations.
arXiv Detail & Related papers (2023-02-02T09:49:07Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
We propose a novel hybrid model to learn the gait differences between three neurodegenerative diseases.
A new correlative memory neural network architecture is designed for extracting temporal features.
Compared with several state-of-the-art techniques, our proposed framework shows more accurate classification results.
arXiv Detail & Related papers (2021-01-07T10:17:11Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Epileptic Seizures Detection Using Deep Learning Techniques: A Review [11.545463604424697]
This study focuses on automated epileptic seizure detection using deep learning (DL) techniques and neuroimaging modalities.
Various methods proposed to diagnose epileptic seizures automatically using EEG and MRI modalities are described.
The challenges in accurate detection of automated epileptic seizures using DL with EEG and MRI modalities are discussed.
arXiv Detail & Related papers (2020-07-02T17:34:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.