Analysis, Identification and Prediction of Parkinson Disease Sub-Types and Progression through Machine Learning
- URL: http://arxiv.org/abs/2306.04748v2
- Date: Mon, 10 Jun 2024 21:29:02 GMT
- Title: Analysis, Identification and Prediction of Parkinson Disease Sub-Types and Progression through Machine Learning
- Authors: Ashwin Ram,
- Abstract summary: This paper represents a groundbreaking advancement in Parkinson disease (PD) research by employing a novel machine learning framework to categorize PD into distinct subtypes and predict its progression.
This innovative approach enables the identification of subtle, yet critical, patterns in PD manifestation, which traditional methodologies often miss.
- Score: 5.982922468400901
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper represents a groundbreaking advancement in Parkinson disease (PD) research by employing a novel machine learning framework to categorize PD into distinct subtypes and predict its progression. Utilizing a comprehensive dataset encompassing both clinical and neurological parameters, the research applies advanced supervised and unsupervised learning techniques. This innovative approach enables the identification of subtle, yet critical, patterns in PD manifestation, which traditional methodologies often miss. Significantly, this research offers a path toward personalized treatment strategies, marking a major stride in the precision medicine domain and showcasing the transformative potential of integrating machine learning into medical research.
Related papers
- Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR)
It highlights the impact of predictive modeling, AI-enhanced devices, and real-time data analysis in improving resuscitation outcomes.
The paper provides a comprehensive overview, classification, and critical analysis of current applications, challenges, and future directions in this emerging field.
arXiv Detail & Related papers (2024-11-03T18:01:50Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Clustering of Disease Trajectories with Explainable Machine Learning: A Case Study on Postoperative Delirium Phenotypes [13.135589459700865]
We propose an approach that combines supervised machine learning for personalized POD risk prediction with unsupervised clustering techniques to uncover potential POD phenotypes.
We show that clustering patients in the SHAP feature importance space successfully recovers the true underlying phenotypes, outperforming clustering in the raw feature space.
arXiv Detail & Related papers (2024-05-06T10:05:46Z) - Diagnosis of Parkinson's Disease Using EEG Signals and Machine Learning Techniques: A Comprehensive Study [1.2972104025246092]
This paper introduces an innovative method for diagnosing Parkinson's disease through the analysis of human EEG signals.
Our approach incorporates a comprehensive review of EEG signal analysis techniques and machine learning methods.
We have engineered an advanced SVM-based model optimized for Parkinson's disease diagnosis.
arXiv Detail & Related papers (2024-04-30T04:25:09Z) - Multi-modal Deep Learning [0.0]
The study refines clinical data processing through Compact Convolutional Transformer (CCT), Patch Up, and the innovative CamCenterLoss technique.
The proposed methodology demonstrates improved prediction accuracy and at tentiveness to critically ill patients compared to Guo JingYuan's ResNet and StageNet approaches.
arXiv Detail & Related papers (2024-03-06T00:36:05Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Machine learning for the diagnosis of Parkinson's disease: A systematic
review [15.463800489731373]
We conducted a systematic literature review of studies published until February 14, 2020, using the PubMed and IEEE Xplore databases.
A total of 209 studies were included, extracted for relevant information and presented in this systematic review.
These studies demonstrate a high potential for adaptation of machine learning methods and novel biomarkers in clinical decision making.
arXiv Detail & Related papers (2020-10-13T01:14:04Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.