論文の概要: An Invitation to Neuroalgebraic Geometry
- arxiv url: http://arxiv.org/abs/2501.18915v1
- Date: Fri, 31 Jan 2025 06:33:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 13:58:16.437842
- Title: An Invitation to Neuroalgebraic Geometry
- Title(参考訳): 神経代数幾何学への招待
- Authors: Giovanni Luca Marchetti, Vahid Shahverdi, Stefano Mereta, Matthew Trager, Kathlén Kohn,
- Abstract要約: 我々は代数幾何学のレンズを通して機械学習モデルによってパラメータ化された関数空間の研究を促進する。
我々は、次元、次数、特異点などの多様体の代数幾何学的不変量の間の辞書を概説する。
研究は、代数幾何学とディープラーニングを橋渡しする研究の方向性の基礎を築いた。
- 参考スコア(独自算出の注目度): 6.369393363312528
- License:
- Abstract: In this expository work, we promote the study of function spaces parameterized by machine learning models through the lens of algebraic geometry. To this end, we focus on algebraic models, such as neural networks with polynomial activations, whose associated function spaces are semi-algebraic varieties. We outline a dictionary between algebro-geometric invariants of these varieties, such as dimension, degree, and singularities, and fundamental aspects of machine learning, such as sample complexity, expressivity, training dynamics, and implicit bias. Along the way, we review the literature and discuss ideas beyond the algebraic domain. This work lays the foundations of a research direction bridging algebraic geometry and deep learning, that we refer to as neuroalgebraic geometry.
- Abstract(参考訳): 本稿では,代数幾何学のレンズを用いて,機械学習モデルによりパラメータ化された関数空間の研究を促進する。
この目的のために我々は、多項式アクティベーションを持つニューラルネットワークのような代数モデルに焦点を合わせ、関連する関数空間は半代数多様体である。
我々は,これらの多様体の次元,次数,特異点などの幾何学的不変量と,サンプル複雑性,表現性,トレーニングダイナミクス,暗黙バイアスといった機械学習の基本的側面との辞書を概説する。
その過程で、文献をレビューし、代数的領域を超えたアイデアについて議論する。
この研究は、我々が神経代数幾何学と呼ぶ代数幾何学と深層学習をブリッジする研究の方向性の基礎を築いた。
関連論文リスト
- On the Geometry and Optimization of Polynomial Convolutional Networks [2.9816332334719773]
単項活性化機能を持つ畳み込みニューラルネットワークについて検討する。
我々は、モデルの表現力を測定するニューロマニフォールドの次元と度合いを計算する。
一般的な大規模データセットに対して、回帰損失の最適化に起因した臨界点の数を定量化する明示的な公式を導出する。
論文 参考訳(メタデータ) (2024-10-01T14:13:05Z) - Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures [3.5357133304100326]
現代の機械学習は、本質的に非ユークリッド的なリッチな構造化されたデータに遭遇する。
そのような非ユークリッドデータから知識を抽出するには、より広範な数学的視点が必要である。
我々は最近の進歩を直感的な統合フレームワークに統合するグラフィカルな分類法を提案する。
論文 参考訳(メタデータ) (2024-07-12T17:48:36Z) - A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
本稿ではReLUのような非微分可能活性化関数の事例について検討する。
最近の2つの研究は、ニューラルネットワークを研究するための幾何学的枠組みを導入した。
本稿では,画像の分類と熱力学問題に関する数値実験を行った。
論文 参考訳(メタデータ) (2024-04-09T08:11:46Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
本稿では、幾何学的GNNに関するデータ構造、モデル、および応用について調査する。
幾何学的メッセージパッシングの観点から既存のモデルの統一的なビューを提供する。
また、方法論開発と実験評価の後の研究を促進するために、アプリケーションと関連するデータセットを要約する。
論文 参考訳(メタデータ) (2024-03-01T12:13:04Z) - Geometry of Polynomial Neural Networks [3.498371632913735]
単項活性化機能を持つニューラルネットワーク(PNN)の表現性と学習過程について検討した。
これらの理論的結果は実験を伴う。
論文 参考訳(メタデータ) (2024-02-01T19:06:06Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
原子系の計算モデリングの最近の進歩は、これらを3次元ユークリッド空間のノードとして埋め込まれた原子を含む幾何学的グラフとして表現している。
Geometric Graph Neural Networksは、タンパク質構造予測から分子シミュレーション、物質生成まで、幅広い応用を駆動する機械学習アーキテクチャとして好まれている。
本稿では,3次元原子システムのための幾何学的GNNの分野について,包括的で自己完結した概要を述べる。
論文 参考訳(メタデータ) (2023-12-12T18:44:19Z) - Unraveling the Single Tangent Space Fallacy: An Analysis and Clarification for Applying Riemannian Geometry in Robot Learning [6.253089330116833]
幾何学的制約を効果的に扱うには、微分幾何学から機械学習手法の定式化へのツールの導入が必要である。
ロボット学習の最近の普及は、主に数学的に定型化された単純化によって特徴づけられている。
本論文は, このアプローチを取り巻く様々な誤解を理論的に解明し, その欠点を実験的に証明するものである。
論文 参考訳(メタデータ) (2023-10-11T21:16:01Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
ラベル付きデータセットに存在する連続した対称性群の検出と同定のためのディープラーニングアルゴリズムを設計する。
完全に接続されたニューラルネットワークを用いて、変換対称性と対応するジェネレータをモデル化する。
また,Lie群とその性質の数学的研究に機械学習アプローチを使うための扉を開く。
論文 参考訳(メタデータ) (2023-01-13T16:25:25Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
ディープニューラルネットワークは、音声認識、機械翻訳、画像解析など、いくつかの科学領域で複雑な問題を解決するために広く使われている。
我々は、リーマン計量を備えた列の最後の多様体で、多様体間の写像の特定の列を研究する。
このようなシーケンスのマップの理論的性質について検討し、最終的に実践的な関心を持つニューラルネットワークの実装間のマップのケースに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-17T11:43:30Z) - Learning Algebraic Representation for Systematic Generalization in
Abstract Reasoning [109.21780441933164]
推論における体系的一般化を改善するためのハイブリッドアプローチを提案する。
我々はRaven's Progressive Matrices (RPM) の抽象的空間時間課題に対する代数的表現を用いたプロトタイプを紹介する。
得られた代数的表現は同型によって復号化して解を生成することができることを示す。
論文 参考訳(メタデータ) (2021-11-25T09:56:30Z) - Geometric Algebra Attention Networks for Small Point Clouds [0.0]
物理科学における問題は、2次元または3次元空間における比較的小さな点集合を扱う。
これらの小点雲上での深層学習のための回転・置換同変アーキテクチャを提案する。
物理, 化学, 生物学に関連するサンプル問題を, モデルを用いて解くことにより, これらのアーキテクチャの有用性を実証する。
論文 参考訳(メタデータ) (2021-10-05T22:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。