論文の概要: Test-Time Training Scaling for Chemical Exploration in Drug Design
- arxiv url: http://arxiv.org/abs/2501.19153v1
- Date: Fri, 31 Jan 2025 14:11:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 22:46:13.046839
- Title: Test-Time Training Scaling for Chemical Exploration in Drug Design
- Title(参考訳): 薬物設計における化学探査のための試験時間スケーリング
- Authors: Morgan Thomas, Albert Bou, Gianni De Fabritiis,
- Abstract要約: 類似の生体活性を有する異種分子を発見するための新しいベンチマークを提案する。
我々は、RLエージェントの集団がベンチマークを解くことができ、一方、単一のエージェントは解けないことを示す。
また、協力戦略は独立エージェントよりもそれほど良くないことがわかった。
- 参考スコア(独自算出の注目度): 3.1406146587437904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chemical language models for molecular design have the potential to find solutions to multi-parameter optimization problems in drug discovery via reinforcement learning (RL). A key requirement to achieve this is the capacity to "search" chemical space to identify all molecules of interest. Here, we propose a challenging new benchmark to discover dissimilar molecules that possess similar bioactivity, a common scenario in drug discovery, but a hard problem to optimize. We show that a population of RL agents can solve the benchmark, while a single agent cannot. We also find that cooperative strategies are not significantly better than independent agents. Moreover, the performance on the benchmark scales log-linearly with the number of independent agents, showing a test-time training scaling law for chemical language models.
- Abstract(参考訳): 分子設計のための化学言語モデルは、強化学習(RL)による薬物発見におけるマルチパラメータ最適化問題の解を見つける可能性がある。
これを達成するための鍵となる要件は、すべての興味ある分子を識別する「化学空間を探索する」能力である。
ここでは、類似の生体活性を持つ異種分子を発見するための挑戦的な新しいベンチマークを提案し、薬物発見の一般的なシナリオであるが、最適化するのは難しい。
我々は、RLエージェントの集団がベンチマークを解くことができ、一方、単一のエージェントは解けないことを示す。
また、協力戦略は独立エージェントよりもそれほど良くないことがわかった。
さらに、ベンチマークのパフォーマンスは独立したエージェント数と対数的にスケールし、化学言語モデルの試験時間トレーニングスケーリング法則を示す。
関連論文リスト
- InversionGNN: A Dual Path Network for Multi-Property Molecular Optimization [77.79862482208326]
InversionGNNは、多目的薬物発見のための有効だがサンプル効率のよいデュアルパスグラフニューラルネットワーク(GNN)である。
関数群の最適組み合わせに関する知識を得るために,マルチプロパティ予測のためのモデルを訓練する。
そして、学習された化学知識は、インバージョン生成経路が要求される性質を持つ分子を生成するのに役立つ。
論文 参考訳(メタデータ) (2025-03-03T12:53:36Z) - DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
本稿では,DiffMSを提案する。DiffMS,式制限付きエンコーダ・デコーダ生成ネットワークは,このタスクにおける最先端性能を実現する。
遅延埋め込みと分子構造をブリッジするロバストデコーダを開発するために,フィンガー構造対による拡散デコーダの事前訓練を行う。
確立されたベンチマーク実験により、DiffMSはデノボ分子生成における既存のモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-13T18:29:48Z) - Crossing New Frontiers: Knowledge-Augmented Large Language Model Prompting for Zero-Shot Text-Based De Novo Molecule Design [0.0]
本研究は,ゼロショットテキスト条件デノボ分子生成タスクにおいて,大規模言語モデル(LLM)の知識増進プロンプトの利用について検討する。
本フレームワークは,ベンチマークデータセット上でのSOTA(State-of-the-art)ベースラインモデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-18T11:37:19Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
大規模言語モデル(LLM)は、数ショットのインコンテキスト学習(ICL)において、優れたパフォーマンスを示している。
マルチショットICLで利用可能な実験データの不足を克服する,新しい半教師付き学習手法を開発した。
示すように、この新しい手法は、既存の分子設計のためのICL法を大幅に改善し、科学者にとってアクセスしやすく、使いやすくする。
論文 参考訳(メタデータ) (2024-07-26T21:10:50Z) - Efficient Evolutionary Search Over Chemical Space with Large Language Models [31.31899988523534]
最適化の目的は区別できない。
化学対応大規模言語モデル(LLM)を進化的アルゴリズムに導入する。
我々のアルゴリズムは最終解の質と収束速度の両方を改善する。
論文 参考訳(メタデータ) (2024-06-23T06:22:49Z) - A Gaussian Process Model for Ordinal Data with Applications to Chemoinformatics [0.0]
化学実験の結果を予測するための条件付きガウス過程モデルを提案する。
我々のモデルの新しい側面は、核がスケーリングパラメータを含み、化学空間の要素間の相関の強さを制御することである。
本稿では,化学発見の容易化と化合物の有効性に対する重要な特徴の同定のための遺伝的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-16T11:18:32Z) - ACEGEN: Reinforcement learning of generative chemical agents for drug discovery [4.966722586536789]
ACEGENは、創薬設計のための包括的で合理化されたツールキットである。
TorchRLは、完全にテストされた再利用可能なコンポーネントを提供する、現代的なRLライブラリである。
複数の薬物発見症例に応用されたACEGENの例を示す。
論文 参考訳(メタデータ) (2024-05-07T20:30:14Z) - Mol-AIR: Molecular Reinforcement Learning with Adaptive Intrinsic Rewards for Goal-directed Molecular Generation [0.0]
Mol-AIRは、ゴール指向分子生成のための適応型固有報酬を用いた強化学習ベースのフレームワークである。
ベンチマークテストでは、Moll-AIRは所望の特性を持つ分子を生成する既存のアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-29T10:44:51Z) - Molecular Generative Adversarial Network with Multi-Property Optimization [3.0001188337985236]
GAN(Generative Adversarial Network)のような深層生成モデルは、創薬におけるデノボ$分子生成に用いられている。
本研究では,マルチプロパティ最適化によりトークンレベルで分子を生成するために,InstGANと呼ばれる即時かつグローバルな報酬を持つアクタ批判的RLに基づく新しいGANを提案する。
論文 参考訳(メタデータ) (2024-03-29T08:55:39Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
本稿では,学生に類似した多制約分子生成大言語モデルTSMMGを紹介する。
TSMMGを訓練するために、これらの「教師」から分子知識を抽出し、大量のテキスト-分子対を構築する。
我々は,TSMMGが複雑で自然言語で記述された特性を満たす分子を生成できることを実験的に明らかにした。
論文 参考訳(メタデータ) (2024-03-20T02:15:55Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
大規模言語モデル(LLM)は、様々なクロスモーダルタスクにおいて顕著なパフォーマンスを示している。
本研究では,分子カプセル翻訳のためのインコンテキストFew-Shot Molecule Learningパラダイムを提案する。
分子理解とテキストベースの分子生成を含む分子キャプション翻訳におけるMollReGPTの有効性を評価する。
論文 参考訳(メタデータ) (2023-06-11T08:16:25Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
分子レグレッション問題に対する一般化能力を高めるために,MROTと呼ばれる新しい最適輸送ベースアルゴリズムを開発した。
MROTは最先端のモデルよりも優れており、新しい物質の発見を加速する有望な可能性を示している。
論文 参考訳(メタデータ) (2022-02-13T04:56:18Z) - Semi-Supervised GCN for learning Molecular Structure-Activity
Relationships [4.468952886990851]
そこで本稿では,半教師付き学習を用いたグラフ-グラフ間ニューラルネットワークの学習手法を提案する。
最終目標として、我々のアプローチは、アクティビティ崖、リード最適化、デノボドラッグデザインといった問題に対処するための貴重なツールとなる可能性がある。
論文 参考訳(メタデータ) (2022-01-25T09:09:43Z) - CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed
Molecular Generation [23.618366377098614]
本稿では,分子潜在表現ベクトルを最適化した遅延空間におけるコスト効率のよい進化戦略を提案する。
我々は、潜伏空間と観測空間をマッピングするために、事前訓練された分子生成モデルを採用する。
提案手法といくつかの高度な手法を比較した複数の最適化タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-11-30T11:02:18Z) - Hit and Lead Discovery with Explorative RL and Fragment-based Molecule
Generation [34.26748101294543]
ドッキングスコアが大きい薬理学的に許容される分子を生成する新しい枠組みを提案する。
本手法は, 生成した分子を, 現実的で有資格な化学空間に限定し, 薬物発見のための空間を効果的に探索する。
提案モデルでは,既存の手法と比較して高品質な分子を生成できる一方で,3つの目標のうち2つの目標に対して最先端の性能を達成できる。
論文 参考訳(メタデータ) (2021-10-04T07:21:00Z) - Federated Learning of Molecular Properties in a Heterogeneous Setting [79.00211946597845]
これらの課題に対処するために、フェデレーションヘテロジニアス分子学習を導入する。
フェデレートラーニングにより、エンドユーザは、独立したクライアント上に分散されたトレーニングデータを保存しながら、グローバルモデルを協調的に構築できる。
FedChemは、化学におけるAI改善のための新しいタイプのコラボレーションを可能にする必要がある。
論文 参考訳(メタデータ) (2021-09-15T12:49:13Z) - Learning to Extend Molecular Scaffolds with Structural Motifs [15.78749196233448]
MoLeRはグラフベースのモデルで、生成手順の初期シードとして足場をサポートする。
そこで本研究では,MoLeRが非制約分子最適化タスクの最先端手法と相容れない性能を示す。
また、いくつかの小さな設計選択が全体的なパフォーマンスに与える影響も示しています。
論文 参考訳(メタデータ) (2021-03-05T18:28:49Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
汎用的なクエリベースの分子最適化フレームワークであるQMOを提案する。
QMOは効率的なクエリに基づいて入力分子の所望の特性を改善する。
QMOは, 有機分子を最適化するベンチマークタスクにおいて, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T18:51:18Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z) - The Synthesizability of Molecules Proposed by Generative Models [3.032184156362992]
機能性分子の発見は高価で時間を要するプロセスである。
初期の薬物発見への関心が高まる技術のひとつに、デ・ノボの分子生成と最適化がある。
これらの手法は、多目的関数の最大化を目的とした新しい分子構造を示唆することができる。
しかし、これらのアプローチの実用性は、合成可能性の無知によって汚される。
論文 参考訳(メタデータ) (2020-02-17T15:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。