Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
- URL: http://arxiv.org/abs/2501.19342v2
- Date: Fri, 16 May 2025 14:42:43 GMT
- Title: Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
- Authors: Natalie Maus, Kyurae Kim, Yimeng Zeng, Haydn Thomas Jones, Fangping Wan, Marcelo Der Torossian Torres, Cesar de la Fuente-Nunez, Jacob R. Gardner,
- Abstract summary: A motivating example for this problem setting occurs in drug design.<n>We propose Multi-Objective Coverage Bayesian Optimization (MOCOBO), a principled algorithm designed to efficiently find a covering set.<n>The results show that the coverage of the K T solutions found by MOCOBO matches or nearly matches the coverage of T solutions obtained by optimizing each objective individually.
- Score: 7.504371299651926
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In multi-objective black-box optimization, the goal is typically to find solutions that optimize a set of $T$ black-box objective functions, $f_1$, ..., $f_T$, simultaneously. Traditional approaches often seek a single Pareto-optimal set that balances trade-offs among all objectives. In this work, we consider a problem setting that departs from this paradigm: finding a small set of K < T solutions, that collectively "covers" the T objectives. A set of solutions is defined as "covering" if, for each objective $f_1$, ..., $f_T$, there is at least one good solution. A motivating example for this problem setting occurs in drug design. For example, we may have T pathogens and aim to identify a set of K < T antibiotics such that at least one antibiotic can be used to treat each pathogen. To address this problem, we propose Multi-Objective Coverage Bayesian Optimization (MOCOBO), a principled algorithm designed to efficiently find a covering set. We validate our approach through experiments on challenging high-dimensional tasks, including applications in peptide and molecular design, where MOCOBO is shown to find high-performing covering sets of solutions. The results show that the coverage of the K < T solutions found by MOCOBO matches or nearly matches the coverage of T solutions obtained by optimizing each objective individually. Furthermore, in in vitro experiments, the peptides found by MOCOBO exhibited high potency against drug-resistant pathogens, further demonstrating the potential of MOCOBO for drug discovery.
Related papers
- Non-Myopic Multi-Objective Bayesian Optimization [64.31753000439514]
We consider the problem of finite-horizon sequential experimental design to solve multi-objective optimization problems.<n>This problem arises in many real-world applications, including materials design.<n>We propose the first set of non-myopic methods for MOO problems.
arXiv Detail & Related papers (2024-12-11T04:05:29Z) - Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
Existing methods primarily focus on optimizing LMs for a single reward function, limiting their adaptability to varied objectives.
Here, we propose $textbfmulti-objective decoding (MOD)$, a decoding-time algorithm that outputs the next token from a linear combination of predictions.
We show why existing approaches can be sub-optimal even in natural settings and obtain optimality guarantees for our method.
arXiv Detail & Related papers (2024-06-27T02:46:30Z) - Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization [14.355588194787073]
Multi-objective optimization can be found in many real-world applications where some conflicting objectives can not be optimized by a single solution.
We propose a novel Tchebycheff set scalarization method to find a few representative solutions to cover a large number of objectives.
In this way, each objective can be well addressed by at least one solution in the small solution set.
arXiv Detail & Related papers (2024-05-30T03:04:57Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Many-Objective Multi-Solution Transport [36.07360460509921]
Many-objective multi-solution Transport (MosT) is a framework that finds multiple diverse solutions in the Pareto front of many objectives.
MosT formulates the problem as a bi-level optimization of weighted objectives for each solution, where the weights are defined by an optimal transport between the objectives and solutions.
arXiv Detail & Related papers (2024-03-06T23:03:12Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Multi-Objective GFlowNets [59.16787189214784]
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization.
In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives.
We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse optimal solutions, based on GFlowNets.
arXiv Detail & Related papers (2022-10-23T16:15:36Z) - Discovering Many Diverse Solutions with Bayesian Optimization [7.136022698519586]
We propose Rank-Ordered Bayesian Optimization with Trust-regions (ROBOT)
ROBOT aims to find a portfolio of high-performing solutions that are diverse according to a user-specified diversity metric.
We show that it can discover large sets of high-performing diverse solutions while requiring few additional function evaluations.
arXiv Detail & Related papers (2022-10-20T01:56:38Z) - Pareto Set Learning for Expensive Multi-Objective Optimization [5.419608513284392]
Expensive multi-objective optimization problems can be found in many real-world applications.
This paper develops a novel learning-based method to approximate the whole Pareto set for MOBO.
arXiv Detail & Related papers (2022-10-16T09:41:54Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
We propose a novel information-theoretic acquisition function for BO called Joint Entropy Search.
We showcase the effectiveness of this new approach on a range of synthetic and real-world problems in terms of the hypervolume and its weighted variants.
arXiv Detail & Related papers (2022-10-06T13:19:08Z) - Designing Biological Sequences via Meta-Reinforcement Learning and
Bayesian Optimization [68.28697120944116]
We train an autoregressive generative model via Meta-Reinforcement Learning to propose promising sequences for selection.
We pose this problem as that of finding an optimal policy over a distribution of MDPs induced by sampling subsets of the data.
Our in-silico experiments show that meta-learning over such ensembles provides robustness against reward misspecification and achieves competitive results.
arXiv Detail & Related papers (2022-09-13T18:37:27Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
We propose an extension of the MAP-Elites algorithm in the multi-objective setting: Multi-Objective MAP-Elites (MOME)
Namely, it combines the diversity inherited from the MAP-Elites grid algorithm with the strength of multi-objective optimizations.
We evaluate our method on several tasks, from standard optimization problems to robotics simulations.
arXiv Detail & Related papers (2022-02-07T10:48:28Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.