Improving Quality Control Of MRI Images Using Synthetic Motion Data
- URL: http://arxiv.org/abs/2502.00160v2
- Date: Thu, 13 Feb 2025 20:12:22 GMT
- Title: Improving Quality Control Of MRI Images Using Synthetic Motion Data
- Authors: Charles Bricout, Kang Ik K. Cho, Michael Harms, Ofer Pasternak, Carrie E. Bearden, Patrick D. McGorry, Rene S. Kahn, John Kane, Barnaby Nelson, Scott W. Woods, Martha E. Shenton, Sylvain Bouix, Samira Ebrahimi Kahou,
- Abstract summary: We introduce an approach that pretrains a model on synthetically generated motion artifacts before applying transfer learning for QC classification.
This method not only improves the accuracy in identifying poor-quality scans but also reduces training time and resource requirements.
- Score: 2.8225380435623606
- License:
- Abstract: MRI quality control (QC) is challenging due to unbalanced and limited datasets, as well as subjective scoring, which hinder the development of reliable automated QC systems. To address these issues, we introduce an approach that pretrains a model on synthetically generated motion artifacts before applying transfer learning for QC classification. This method not only improves the accuracy in identifying poor-quality scans but also reduces training time and resource requirements compared to training from scratch. By leveraging synthetic data, we provide a more robust and resource-efficient solution for QC automation in MRI, paving the way for broader adoption in diverse research settings.
Related papers
- Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate.
Joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning.
arXiv Detail & Related papers (2024-12-21T10:18:55Z) - Boosting CLIP Adaptation for Image Quality Assessment via Meta-Prompt Learning and Gradient Regularization [55.09893295671917]
This paper introduces a novel Gradient-Regulated Meta-Prompt IQA Framework (GRMP-IQA)
The GRMP-IQA comprises two key modules: Meta-Prompt Pre-training Module and Quality-Aware Gradient Regularization.
Experiments on five standard BIQA datasets demonstrate the superior performance to the state-of-the-art BIQA methods under limited data setting.
arXiv Detail & Related papers (2024-09-09T07:26:21Z) - Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
We introduce Q-Ground, the first framework aimed at tackling fine-scale visual quality grounding.
Q-Ground combines large multi-modality models with detailed visual quality analysis.
Central to our contribution is the introduction of the QGround-100K dataset.
arXiv Detail & Related papers (2024-07-24T06:42:46Z) - Human-in-the-loop Reinforcement Learning for Data Quality Monitoring in Particle Physics Experiments [0.0]
We propose a proof-of-concept for applying human-in-the-loop Reinforcement Learning to automate the Data Quality Monitoring process.
We show that random, unbiased noise in human classification can be reduced, leading to an improved accuracy over the baseline.
arXiv Detail & Related papers (2024-05-24T12:52:46Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
We introduce a framework that leverages Reinforcement Learning with Deep Q-Networks (DQN) for classification tasks.
We present a preprocessing technique for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner.
The integration of DQN with a 1D-CNN-LSTM architecture optimize the decision-making process in real-time.
arXiv Detail & Related papers (2024-02-09T02:03:13Z) - MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT [6.158876574189994]
Image quality assessment (IQA) plays a critical role in optimizing radiation dose and developing novel medical imaging techniques.
Recent deep learning-based approaches have demonstrated strong modeling capabilities and potential for medical IQA.
We propose a multi-scale distributions regression approach to predict quality scores by constraining the output distribution.
arXiv Detail & Related papers (2023-11-14T09:33:33Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - A Modulation Layer to Increase Neural Network Robustness Against Data
Quality Issues [22.62510395932645]
Data missingness and quality are common problems in machine learning, especially for high-stakes applications such as healthcare.
We propose a novel neural network modification to mitigate the impacts of low quality and missing data.
Our results suggest that explicitly accounting for reduced information quality with a modulating fully connected layer can enable the deployment of artificial intelligence systems in real-time applications.
arXiv Detail & Related papers (2021-07-19T01:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.