論文の概要: GraphMinNet: Learning Dependencies in Graphs with Light Complexity Minimal Architecture
- arxiv url: http://arxiv.org/abs/2502.00282v1
- Date: Sat, 01 Feb 2025 02:46:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:58:16.453244
- Title: GraphMinNet: Learning Dependencies in Graphs with Light Complexity Minimal Architecture
- Title(参考訳): GraphMinNet: 最小限のアーキテクチャでグラフの依存性を学習する
- Authors: Md Atik Ahamed, Andrew Cheng, Qiang Ye, Qiang Cheng,
- Abstract要約: 本稿では,最小限のGated Recurrent Unitの考え方をグラフ構造化データに一般化した新しいGNNアーキテクチャであるGraphMinNetを紹介する。
本手法は線形計算複雑性を伴う効率的なLRDモデリングを実現する。
その結果、10のデータセットのうち6つが優れた性能を示し、他のデータセットと競合する結果が得られた。
- 参考スコア(独自算出の注目度): 12.267920696617017
- License:
- Abstract: Graph Neural Networks (GNNs) have demonstrated remarkable success in various applications, yet they often struggle to capture long-range dependencies (LRD) effectively. This paper introduces GraphMinNet, a novel GNN architecture that generalizes the idea of minimal Gated Recurrent Units to graph-structured data. Our approach achieves efficient LRD modeling with linear computational complexity while maintaining permutation equivariance and stability. The model incorporates both structural and positional information through a unique combination of feature and positional encodings, leading to provably stronger expressiveness than the 1-WL test. Theoretical analysis establishes that GraphMinNet maintains non-decaying gradients over long distances, ensuring effective long-range information propagation. Extensive experiments on ten diverse datasets, including molecular graphs, image graphs, and synthetic networks, demonstrate that GraphMinNet achieves state-of-the-art performance while being computationally efficient. Our results show superior performance on 6 out of 10 datasets and competitive results on the others, validating the effectiveness of our approach in capturing both local and global graph structures.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、様々なアプリケーションで顕著な成功を収めてきたが、多くの場合、長距離依存(LRD)を効果的に捉えるのに苦労している。
本稿では,最小限のGated Recurrent Unitの考え方をグラフ構造化データに一般化した新しいGNNアーキテクチャであるGraphMinNetを紹介する。
提案手法は, 線形計算複雑性を伴う効率的なLRDモデリングを実現するとともに, 置換等分散と安定性を保ちながら実現する。
このモデルは特徴エンコーディングと位置エンコーディングのユニークな組み合わせによって構造情報と位置情報の両方を組み込んでおり、1-WLテストよりも明らかに強い表現性をもたらす。
理論的解析により、GraphMinNetは長距離の非遅延勾配を維持し、効果的な長距離情報伝搬を保証することが証明される。
分子グラフ、画像グラフ、合成ネットワークを含む10の多様なデータセットに関する大規模な実験は、GraphMinNetが計算効率を保ちながら最先端のパフォーマンスを達成することを実証している。
その結果,10のデータセットのうち6つが優れた性能を示し,他のデータセットと競合する結果が得られ,局所的なグラフ構造とグローバルなグラフ構造の両方を捕捉する手法の有効性が検証された。
関連論文リスト
- Exact Computation of Any-Order Shapley Interactions for Graph Neural Networks [53.10674067060148]
共有インタラクション(SI)は、複数のノード間のノードのコントリビューションとインタラクションを定量化する。
GNNアーキテクチャを利用して、ノード埋め込みにおける相互作用の構造がグラフ予測のために保存されていることを示す。
任意の順序SIを正確に計算するための効率的なアプローチであるGraphSHAP-IQを導入する。
論文 参考訳(メタデータ) (2025-01-28T13:37:44Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
本稿では,Top-mアテンション機構アグリゲーションコンポーネントと近傍アグリゲーションコンポーネントを統合した,革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
提案手法の有効性を評価するため,提案手法をGNN分野において未探索の新たな課題である引用感情予測に適用した。
論文 参考訳(メタデータ) (2024-11-23T05:31:25Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Ensemble Learning for Graph Neural Networks [28.3650473174488]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための様々な分野で成功している。
本稿では,GNNの性能とロバスト性向上のためのアンサンブル学習手法の適用について検討する。
論文 参考訳(メタデータ) (2023-10-22T03:55:13Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization [23.609017952951454]
グラフ計算のための特徴指向最適化を備えたスケーラブルグラフニューラルネットワーク(GNN)であるSCARAを提案する。
SCARAはノードの特徴からグラフの埋め込みを効率的に計算し、機能の結果を選択して再利用することでオーバーヘッドを減らします。
利用可能な最大10億のGNNデータセットであるPapers100M(1110万ノード、1.6Bエッジ)を100秒でプリ計算するのが効率的である。
論文 参考訳(メタデータ) (2022-07-19T10:32:11Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - GraphTheta: A Distributed Graph Neural Network Learning System With
Flexible Training Strategy [5.466414428765544]
新しい分散グラフ学習システムGraphThetaを紹介します。
複数のトレーニング戦略をサポートし、大規模グラフ上で効率的でスケーラブルな学習を可能にします。
この仕事は、文学における10億規模のネットワーク上で実施された最大のエッジアトリビュートGNN学習タスクを表します。
論文 参考訳(メタデータ) (2021-04-21T14:51:33Z) - CoSimGNN: Towards Large-scale Graph Similarity Computation [5.17905821006887]
グラフニューラルネットワーク(GNN)はこのタスクにデータ駆動型ソリューションを提供する。
既存のGNNベースの手法は、それぞれ2つのグラフを埋め込んだり、グラフ全体のクロスグラフインタラクションをデプロイしたりするが、まだ競合する結果が得られない。
このフレームワークは,まず適応的なプーリング操作で大きなグラフを埋め込んで粗くし,最後に類似点を求めるために粗いグラフにきめ細かな相互作用を展開させる。
論文 参考訳(メタデータ) (2020-05-14T16:33:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。