論文の概要: LLMSecConfig: An LLM-Based Approach for Fixing Software Container Misconfigurations
- arxiv url: http://arxiv.org/abs/2502.02009v1
- Date: Tue, 04 Feb 2025 04:56:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:06:30.438882
- Title: LLMSecConfig: An LLM-Based Approach for Fixing Software Container Misconfigurations
- Title(参考訳): LLMSecConfig: ソフトウェアコンテナ設定の修正のためのLLMベースのアプローチ
- Authors: Ziyang Ye, Triet Huynh Minh Le, M. Ali Babar,
- Abstract要約: コンテナオーケストレーションにおけるセキュリティの誤設定は、ソフトウェアシステムに深刻な脅威をもたらす。
現在、業界はこれらの設定を修正できる自動化ソリューションを欠いている。
本研究では,SAT と LLM を組み合わせることで,このギャップを埋める革新的なフレームワーク LLMSecConfig を紹介する。
- 参考スコア(独自算出の注目度): 0.716879432974126
- License:
- Abstract: Security misconfigurations in Container Orchestrators (COs) can pose serious threats to software systems. While Static Analysis Tools (SATs) can effectively detect these security vulnerabilities, the industry currently lacks automated solutions capable of fixing these misconfigurations. The emergence of Large Language Models (LLMs), with their proven capabilities in code understanding and generation, presents an opportunity to address this limitation. This study introduces LLMSecConfig, an innovative framework that bridges this gap by combining SATs with LLMs. Our approach leverages advanced prompting techniques and Retrieval-Augmented Generation (RAG) to automatically repair security misconfigurations while preserving operational functionality. Evaluation of 1,000 real-world Kubernetes configurations achieved a 94\% success rate while maintaining a low rate of introducing new misconfigurations. Our work makes a promising step towards automated container security management, reducing the manual effort required for configuration maintenance.
- Abstract(参考訳): コンテナオーケストレーション(CO)のセキュリティ設定は、ソフトウェアシステムに深刻な脅威をもたらす可能性がある。
静的解析ツール(SAT)は、これらのセキュリティ脆弱性を効果的に検出できるが、業界は現在、これらの誤設定を修正する自動化ソリューションを欠いている。
大規模言語モデル(LLM)の出現は、コード理解と生成で証明された能力とともに、この制限に対処する機会を提供する。
本研究では,SAT と LLM を組み合わせることで,このギャップを埋める革新的なフレームワーク LLMSecConfig を紹介する。
当社のアプローチでは,高度なプロンプト技術とレトリーバル拡張ジェネレーション(RAG)を活用して,運用機能を維持しながら,セキュリティの誤設定を自動的に修復する。
1000の現実世界のKubernetes構成の評価は、新しい設定の導入率を低く保ちながら、94\%の成功率を達成した。
私たちの作業はコンテナのセキュリティ管理を自動化するための有望なステップです。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - AutoSafeCoder: A Multi-Agent Framework for Securing LLM Code Generation through Static Analysis and Fuzz Testing [6.334110674473677]
既存のアプローチは、セキュアで脆弱性のないコードを生成するのに苦労するコード生成に、単一のエージェントに依存することが多い。
コード生成,脆弱性解析,セキュリティ強化にLLM駆動エージェントを活用するマルチエージェントフレームワークであるAutoSafeCoderを提案する。
私たちのコントリビューションは、コード生成中に反復的なプロセスで動的および静的なテストを統合することで、マルチエージェントコード生成の安全性を確保することに焦点を当てています。
論文 参考訳(メタデータ) (2024-09-16T21:15:56Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
本稿では,RTL対応LLMの精度と信頼性を高めるためのフレームワークであるAIvrilを紹介する。
論文 参考訳(メタデータ) (2024-09-03T15:07:11Z) - Tamper-Resistant Safeguards for Open-Weight LLMs [57.90526233549399]
オープンウェイトLLMにタンパ耐性保護具を組み込む方法を開発した。
本手法は良性を保持しながらタンパー抵抗を大幅に改善する。
以上の結果から, タンパー抵抗はトラクタブルな問題であることがわかった。
論文 参考訳(メタデータ) (2024-08-01T17:59:12Z) - PenHeal: A Two-Stage LLM Framework for Automated Pentesting and Optimal Remediation [18.432274815853116]
PenHealは2段階のLSMベースのフレームワークで、自律的に脆弱性を特定してセキュリティを確保する。
本稿では,LLMベースの2段階フレームワークであるPenHealについて紹介する。
論文 参考訳(メタデータ) (2024-07-25T05:42:14Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
強化学習(Reinforcement Learning, RL)は,現実のアプリケーションに対して限られた成功を収める,有望なアプローチである。
本稿では,複数の側面からなる学習型制御フレームワークを提案する。
ECBFをベースとしたモジュラーディープRLアルゴリズムは,ほぼ完全な成功率を達成し,高い確率で安全性を保護することを示す。
論文 参考訳(メタデータ) (2021-09-07T00:51:12Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
本稿では,無線アクセスネットワーク(RAN)アプリケーションの安全管理のためのシンボル強化学習(SRL)アーキテクチャを提案する。
我々は、ユーザが所定のセルネットワークトポロジに対して高レベルの論理的安全性仕様を指定できる純粋に自動化された手順を提供する。
ユーザがシステムに意図仕様を設定するのを支援するために開発されたユーザインターフェース(UI)を導入し、提案するエージェントの動作の違いを検査する。
論文 参考訳(メタデータ) (2021-06-03T16:45:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。