論文の概要: (Neural-Symbolic) Machine Learning for Inconsistency Measurement
- arxiv url: http://arxiv.org/abs/2502.02963v1
- Date: Wed, 05 Feb 2025 08:00:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:27:33.144726
- Title: (Neural-Symbolic) Machine Learning for Inconsistency Measurement
- Title(参考訳): 不整合測定のための(ニューラル・シンボリック)機械学習
- Authors: Sven Weinzierl, Carl Cora,
- Abstract要約: 本稿では、命題論理知識ベースに対する不整合(数値値)の次数を決定するための機械学習ベースのアプローチを提案する。
具体的には、不整合度が$incmi$と$incat$が命題論理知識ベースに割り当てる値を予測することを学習する回帰モデルとニューラルベースモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present machine-learning-based approaches for determining the \emph{degree} of inconsistency -- which is a numerical value -- for propositional logic knowledge bases. Specifically, we present regression- and neural-based models that learn to predict the values that the inconsistency measures $\incmi$ and $\incat$ would assign to propositional logic knowledge bases. Our main motivation is that computing these values conventionally can be hard complexity-wise. As an important addition, we use specific postulates, that is, properties, of the underlying inconsistency measures to infer symbolic rules, which we combine with the learning-based models in the form of constraints. We perform various experiments and show that a) predicting the degree values is feasible in many situations, and b) including the symbolic constraints deduced from the rationality postulates increases the prediction quality.
- Abstract(参考訳): 本稿では、命題論理知識ベースに対する不整合(数値値)の「emph{degree}」を決定するための機械学習に基づくアプローチを提案する。
具体的には、不整合が$\incmi$と$\incat$が命題論理知識ベースに割り当てる値を予測することを学ぶ回帰モデルとニューラルベースモデルを提案する。
私たちの主な動機は、これらの値の計算が従来より複雑であることです。
重要な追加として、我々は特定の仮定、すなわち、根底にある不整合性尺度を用いて、制約の形で学習に基づくモデルと組み合わせ、象徴的な規則を推論する。
私たちは様々な実験を行い、それを示します。
a) 多くの状況において、その程度が実現可能であることを予測し、
b) 合理性仮定から導出される象徴的制約を含むことにより,予測品質が向上する。
関連論文リスト
- The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - Bounds and guarantees for learning and entanglement [0.0]
情報理論は、与えられたデータセット上での学習アルゴリズムのパフォーマンスを予測するツールを提供する。
この研究はまず、小さな条件エントロピーが学習を成功させるのに十分であることを示すことで、この関係を拡張した。
この情報理論と学習の関連性は、量子システムを含む学習タスクを特徴づけるために、同様に量子情報理論を適用することを示唆している。
論文 参考訳(メタデータ) (2024-04-10T18:09:22Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Enriching Disentanglement: From Logical Definitions to Quantitative Metrics [59.12308034729482]
複雑なデータにおける説明的要素を遠ざけることは、データ効率の表現学習にとって有望なアプローチである。
論理的定義と量的指標の関連性を確立し, 理論的に根ざした絡み合いの指標を導出する。
本研究では,非交叉表現の異なる側面を分離することにより,提案手法の有効性を実証的に実証する。
論文 参考訳(メタデータ) (2023-05-19T08:22:23Z) - Controllable Neural Symbolic Regression [10.128755371375572]
記号回帰では、数学的記号の最小使用量で実験データに適合する解析式を見つけることが目的である。
仮説付きニューラルシンボリック回帰(NSRwH)と呼ばれる新しいニューラルシンボリック回帰法を提案する。
実験により,提案した条件付き深層学習モデルは,精度で非条件付き学習モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-04-20T14:20:48Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
我々は,モデル予測が説明できる範囲を定量化するために,6つの異なるモデルに依存しないメトリクスを開発した。
これらのメトリクスは、局所的な重要性、グローバルな重要性、代理予測など、モデル説明可能性のさまざまな側面を測定する。
分類と回帰タスクにおけるこれらのメトリクスの実用性を実証し、これらのメトリクスを公開のために既存のPythonパッケージに統合する。
論文 参考訳(メタデータ) (2023-02-23T15:28:36Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
本稿では,ニューラルモデルによる反事実文の評価について検討する。
まず、神経因果モデル(NCM)が十分に表現可能であることを示す。
第2に,反事実分布の同時同定と推定を行うアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-30T18:29:09Z) - Logic Constraints to Feature Importances [17.234442722611803]
AIモデルの"ブラックボックス"の性質は、診断技術や自律的ガイドなど、高度な分野における信頼性の高い応用の限界であることが多い。
近年の研究では、適切な解釈可能性のレベルが、モデル信頼性というより一般的な概念を強制できることが示されている。
本論文の基本的な考え方は,特定のタスクにおける特徴の重要性に関する人間の事前知識を利用して,モデルの適合のフェーズを整合的に支援することである。
論文 参考訳(メタデータ) (2021-10-13T09:28:38Z) - Logical Neural Networks [51.46602187496816]
ニューラルネットワーク(学習)と記号論理(知識と推論)の両方の重要な特性をシームレスに提供する新しいフレームワークを提案する。
すべてのニューロンは、重み付けされた実数値論理における公式の構成要素としての意味を持ち、非常に解釈不能な非絡み合い表現をもたらす。
推論は事前に定義されたターゲット変数ではなく、オムニであり、論理的推論に対応する。
論文 参考訳(メタデータ) (2020-06-23T16:55:45Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - Relational Neural Machines [19.569025323453257]
本稿では,学習者のパラメータと一階論理に基づく推論を共同で学習するフレームワークを提案する。
ニューラルネットワークは、純粋な準記号学習の場合の古典的な学習結果とマルコフ論理ネットワークの両方を復元することができる。
適切なアルゴリズム解は、大規模な問題において学習と推論が引き出すことができるように考案されている。
論文 参考訳(メタデータ) (2020-02-06T10:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。