論文の概要: GARAD-SLAM: 3D GAussian splatting for Real-time Anti Dynamic SLAM
- arxiv url: http://arxiv.org/abs/2502.03228v1
- Date: Wed, 05 Feb 2025 14:44:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:26:37.818562
- Title: GARAD-SLAM: 3D GAussian splatting for Real-time Anti Dynamic SLAM
- Title(参考訳): GARAD-SLAM:リアルタイムアンチダイナミックSLAMのための3次元GAussian splatting
- Authors: Mingrui Li, Weijian Chen, Na Cheng, Jingyuan Xu, Dong Li, Hongyu Wang,
- Abstract要約: 動的シーンに適したリアルタイム3DGSベースのSLAMシステムであるGARAD-SLAMを提案する。
追跡の面では、ガウスの動的セグメンテーションを直接実行し、それらをフロントエンドにマッピングして動的点ラベルを得る。
実世界のデータセットを用いた結果から,本手法はベースライン手法と比較して,トラッキングに競争力があることが示された。
- 参考スコア(独自算出の注目度): 9.060527946525381
- License:
- Abstract: The 3D Gaussian Splatting (3DGS)-based SLAM system has garnered widespread attention due to its excellent performance in real-time high-fidelity rendering. However, in real-world environments with dynamic objects, existing 3DGS-based SLAM systems often face mapping errors and tracking drift issues. To address these problems, we propose GARAD-SLAM, a real-time 3DGS-based SLAM system tailored for dynamic scenes. In terms of tracking, unlike traditional methods, we directly perform dynamic segmentation on Gaussians and map them back to the front-end to obtain dynamic point labels through a Gaussian pyramid network, achieving precise dynamic removal and robust tracking. For mapping, we impose rendering penalties on dynamically labeled Gaussians, which are updated through the network, to avoid irreversible erroneous removal caused by simple pruning. Our results on real-world datasets demonstrate that our method is competitive in tracking compared to baseline methods, generating fewer artifacts and higher-quality reconstructions in rendering.
- Abstract(参考訳): 3D Gaussian Splatting(3DGS)ベースのSLAMシステムは、リアルタイム高忠実レンダリングにおける優れた性能のため、広く注目を集めている。
しかし、動的オブジェクトを持つ現実の環境では、既存の3DGSベースのSLAMシステムは、しばしばマッピングエラーに直面し、ドリフトの問題を追跡する。
これらの問題を解決するために,動的シーンに適したリアルタイム3DGSベースのSLAMシステムであるGARAD-SLAMを提案する。
トラッキングに関しては、従来の手法とは異なり、我々は直接ガウスのダイナミックセグメンテーションを実行し、それらをフロントエンドにマッピングし、ガウスピラミッドネットワークを通じて動的ポイントラベルを取得し、正確な動的除去とロバストな追跡を実現する。
マッピングでは,ネットワークを通じて更新される動的ラベル付きガウシアンに対して,単純な刈り取りによる非可逆的誤除去を回避するために,レンダリングペナルティを課す。
実世界のデータセットを用いた結果から,本手法はベースライン手法と比較して競争力があり,アーティファクトが少ないこと,レンダリングにおける高品質な再構築が可能であることが示された。
関連論文リスト
- Street Gaussians without 3D Object Tracker [86.62329193275916]
既存の手法では、オブジェクトポーズの労働集約的な手動ラベリングを使用して、標準的な空間内で動的オブジェクトを再構築し、レンダリング中にこれらのポーズに基づいてそれらを動かす。
本研究では,3次元オブジェクト融合戦略における2次元ディープトラッカーの関連性を利用して,安定なオブジェクト追跡モジュールを提案する。
我々は、軌道誤差を自律的に補正し、見逃した検出を回復する暗黙の特徴空間に、モーションラーニング戦略を導入することで、避けられないトラッキングエラーに対処する。
論文 参考訳(メタデータ) (2024-12-07T05:49:42Z) - Urban4D: Semantic-Guided 4D Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
Urban4Dは、深い2Dセマンティックマップ生成の進歩に触発されたセマンティック誘導分解戦略である。
我々のアプローチは、信頼できるセマンティック・ガウシアンを通して潜在的に動的対象を区別する。
実世界のデータセットでの実験では、Urban4Dは従来の最先端の手法と同等または優れた品質を実現している。
論文 参考訳(メタデータ) (2024-12-04T16:59:49Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian SplattingはSLAMシステムにおける代替シーン表現として期待できる結果を示した。
本稿では,RGBのみの高密度SLAMシステムであるIG-SLAMについて述べる。
我々は、最先端のRGBのみのSLAMシステムと競合する性能を示し、高速な動作速度を実現する。
論文 参考訳(メタデータ) (2024-08-02T09:07:31Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なスケール認識と軌道追跡の改善により、事前レンダリングの限界に対処する。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
論文 参考訳(メタデータ) (2024-04-01T04:57:41Z) - DDN-SLAM: Real-time Dense Dynamic Neural Implicit SLAM [5.267859554944985]
DDN-SLAMは,意味的特徴を統合した最初のリアルタイム高密度ニューラルネットワーク暗黙的SLAMシステムである。
既存の暗黙的SLAMシステムと比較して、動的データセットの追跡結果は平均軌道誤差(ATE)の精度が平均90%向上していることを示している。
論文 参考訳(メタデータ) (2024-01-03T05:42:17Z) - Gaussian Splatting SLAM [16.3858380078553]
単分子SLAMにおける3次元ガウス散乱の最初の応用について述べる。
我々の方法は3fpsで動作し、正確な追跡、マッピング、高品質なレンダリングに必要な表現を統一する。
ライブカメラから高忠実度で連続的に3Dシーンを再構築するためには、いくつかの革新が必要である。
論文 参考訳(メタデータ) (2023-12-11T18:19:04Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - 3DS-SLAM: A 3D Object Detection based Semantic SLAM towards Dynamic
Indoor Environments [1.4901625182926226]
3DS-SLAM, 3D Semantic SLAMを導入する。
3DS-SLAMは、意味的制約と幾何学的制約の両方を逐次解決する密結合アルゴリズムである。
TUM RGB-Dデータセットの動的シーケンスを平均98.01%改善している。
論文 参考訳(メタデータ) (2023-10-10T07:48:40Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
暗黙の神経表現は、動的なシーンの再構築とレンダリングに対する新しいアプローチの道を開いた。
本稿では,3次元ガウシアンを用いてシーンを再構成し,標準空間で学習する,変形可能な3次元ガウシアンスプラッティング法を提案する。
微分ガウシアン化器により、変形可能な3Dガウシアンは高いレンダリング品質だけでなく、リアルタイムレンダリング速度も達成できる。
論文 参考訳(メタデータ) (2023-09-22T16:04:02Z) - Using Detection, Tracking and Prediction in Visual SLAM to Achieve
Real-time Semantic Mapping of Dynamic Scenarios [70.70421502784598]
RDS-SLAMは、一般的に使用されているIntel Core i7 CPUのみを使用して、動的シナリオのためのオブジェクトレベルでのセマンティックマップをリアルタイムで構築することができる。
我々は, TUM RGB-DデータセットにおけるRDS-SLAMを評価し, 動的シナリオにおいて, RDS-SLAMはフレームあたり30.3msで動作可能であることを示した。
論文 参考訳(メタデータ) (2022-10-10T11:03:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。