論文の概要: Artificial Intelligence and Legal Analysis: Implications for Legal Education and the Profession
- arxiv url: http://arxiv.org/abs/2502.03487v1
- Date: Tue, 04 Feb 2025 19:50:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:34:24.571306
- Title: Artificial Intelligence and Legal Analysis: Implications for Legal Education and the Profession
- Title(参考訳): 人工知能と法学分析 : 法学教育と専門職をめざして
- Authors: Lee Peoples,
- Abstract要約: 本稿では,法的および非法的大規模言語モデルが法的解析を行う能力について検討した結果を報告する。
その結果, LLMは基本的なIRAC分析を行うことができるが, 詳細を欠いた短時間の応答, 回答にコミットできないこと, 虚偽の自信, 幻覚によって制限されることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This article reports the results of a study examining the ability of legal and non-legal Large Language Models to perform legal analysis using the Issue-Rule-Application-Conclusion framework. LLMs were tested on legal reasoning tasks involving rule analysis and analogical reasoning. The results show that LLMs can conduct basic IRAC analysis, but are limited by brief responses lacking detail, an inability to commit to answers, false confidence, and hallucinations. The study compares legal and nonlegal LLMs, identifies shortcomings, and explores traits that may hinder their ability to think like a lawyer. It also discusses the implications for legal education and practice, highlighting the need for critical thinking skills in future lawyers and the potential pitfalls of overreliance on artificial intelligence AI resulting in a loss of logic, reasoning, and critical thinking skills.
- Abstract(参考訳): 本稿では,問題ルール・アプリケーション・コンクルージョン・フレームワークを用いて,法的および非法的大規模言語モデルによる法的分析を行う能力について検討した結果を報告する。
LLMは規則分析と類似推論を含む法的推論のタスクで試験された。
その結果, LLMは基本的なIRAC分析を行うことができるが, 詳細を欠いた短時間の応答, 回答にコミットできないこと, 虚偽の自信, 幻覚によって制限されることがわかった。
この研究は、法律と非法的なLLMを比較し、欠点を特定し、弁護士のように考える能力を妨げる可能性のある特性を探究する。
さらに、将来の弁護士における批判的思考スキルの必要性と、人工知能AIへの過度な依存の潜在的な落とし穴により、論理学、推論、批判的思考スキルが失われるという、法的教育と実践の意味についても論じている。
関連論文リスト
- Legal Evalutions and Challenges of Large Language Models [42.51294752406578]
我々は,OPENAI o1モデルを事例研究として,法律規定の適用における大規模モデルの性能評価に利用した。
我々は、オープンソース、クローズドソース、および法律ドメインのために特別に訓練された法律固有のモデルを含む、最先端のLLMを比較します。
論文 参考訳(メタデータ) (2024-11-15T12:23:12Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Can ChatGPT Perform Reasoning Using the IRAC Method in Analyzing Legal
Scenarios Like a Lawyer? [14.103170412148584]
IRAC法によるコーパスの解析にChatGPTを適用した。
コーパス内の各シナリオは、半構造化形式で完全なIRAC分析で注釈付けされる。
また, IRAC分析におけるChatGPTの初回評価を行い, 法的専門職の分析との整合性について検討した。
論文 参考訳(メタデータ) (2023-10-23T12:51:49Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
大規模言語モデル(LLM)は、ドメイン固有のアプリケーションに大きな可能性を示している。
GPT-4の法律評価をめぐる近年の論争は、現実の法的タスクにおけるパフォーマンスに関する疑問を提起している。
我々は,LLMに基づく実践的ベースラインソリューションを設計し,法的判断予測の課題を検証した。
論文 参考訳(メタデータ) (2023-10-18T07:38:04Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
本稿では,税法の適用におけるLarge Language Models(LLM)の機能について考察する。
実験では,その後のOpenAIモデルリリースにおけるパフォーマンスの向上とともに,新たな法的理解能力を実証した。
発見は、特に拡張の促進と正しい法的文書と組み合わせることで、高いレベルの精度で実行可能であるが、専門家の税務弁護士レベルではまだ実行できないことを示している。
論文 参考訳(メタデータ) (2023-06-12T12:40:48Z) - From LSAT: The Progress and Challenges of Complex Reasoning [56.07448735248901]
本稿では,LSAT(Law School Admission Test)の3つの課題について,解析的推論,論理的推論,読解の3つの課題について検討する。
本稿では,これら3つのタスクを統合するハイブリッド推論システムを提案する。
論文 参考訳(メタデータ) (2021-08-02T05:43:03Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - Legal Sentiment Analysis and Opinion Mining (LSAOM): Assimilating
Advances in Autonomous AI Legal Reasoning [0.0]
法的なセンチメント分析とオピニオンマイニング(LSAOM)は、法的議論と物語の基礎となる2つの現象と行動からなる。
LSAOMの実施への取り組みは、歴史的に人間の手と認知によって行われてきた。
特に自然言語処理(NLP)と機械学習(ML)を含む人工知能(AI)の進歩は、センティメント分析とオピニオンマイニングのいずれにおいても、自動化が体系的に実行可能であることを後押ししている。
論文 参考訳(メタデータ) (2020-10-02T04:15:21Z) - Authorized and Unauthorized Practices of Law: The Role of Autonomous
Levels of AI Legal Reasoning [0.0]
法分野は、認可された法律実務(APL)と無認可の法律実務(UPL)を定義することを目指している。
本稿では,AILR自律レベルに適用する上で,APLとUPLの基盤となる重要な特徴を記述した新たなインスツルメンタルグリッドについて検討する。
論文 参考訳(メタデータ) (2020-08-19T18:35:58Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。