論文の概要: Enhancing Online Learning Efficiency Through Heterogeneous Resource Integration with a Multi-Agent RAG System
- arxiv url: http://arxiv.org/abs/2502.03948v1
- Date: Thu, 06 Feb 2025 10:36:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:33:53.023683
- Title: Enhancing Online Learning Efficiency Through Heterogeneous Resource Integration with a Multi-Agent RAG System
- Title(参考訳): マルチエージェントRAGシステムによる異種資源統合によるオンライン学習効率の向上
- Authors: Devansh Srivastav, Hasan Md Tusfiqur Alam, Afsaneh Asaei, Mahmoud Fazeli, Tanisha Sharma, Daniel Sonntag,
- Abstract要約: 本稿では,マルチエージェント検索・拡張生成システム(RAG)のアーリーステージについて紹介する。
特定のリソースタイプに適した特殊なエージェントを使用して、システムは関連する情報の検索と合成を自動化する。
事前のユーザ調査では、システムの強力なユーザビリティと中程度の高機能性を確認し、知識獲得の効率性を向上させる可能性を実証した。
- 参考スコア(独自算出の注目度): 1.8582101726265616
- License:
- Abstract: Efficient online learning requires seamless access to diverse resources such as videos, code repositories, documentation, and general web content. This poster paper introduces early-stage work on a Multi-Agent Retrieval-Augmented Generation (RAG) System designed to enhance learning efficiency by integrating these heterogeneous resources. Using specialized agents tailored for specific resource types (e.g., YouTube tutorials, GitHub repositories, documentation websites, and search engines), the system automates the retrieval and synthesis of relevant information. By streamlining the process of finding and combining knowledge, this approach reduces manual effort and enhances the learning experience. A preliminary user study confirmed the system's strong usability and moderate-high utility, demonstrating its potential to improve the efficiency of knowledge acquisition.
- Abstract(参考訳): 効果的なオンライン学習には、ビデオやコードリポジトリ、ドキュメント、一般的なWebコンテンツなど、さまざまなリソースへのシームレスなアクセスが必要である。
本稿では,これらの異種資源の統合による学習効率の向上を目的としたマルチエージェント検索・拡張生成システム(RAG)の早期開発について紹介する。
特定のリソースタイプ(YouTubeチュートリアル、GitHubリポジトリ、ドキュメンテーションWebサイト、検索エンジンなど)用に調整された特殊なエージェントを使用して、システムは関連する情報の検索と合成を自動化する。
知識の発見と組み合わせのプロセスの合理化によって、このアプローチは手作業の労力を減らし、学習経験を向上させる。
事前のユーザ調査では、システムの強力なユーザビリティと中程度の高機能性を確認し、知識獲得の効率性を向上させる可能性を実証した。
関連論文リスト
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
大規模言語モデル(LLM)は通常、知識材料を瞬時に活用するために、検索強化世代に依存している。
本稿では,知識ベースを含む下流タスクへの効率的な適応を目的としたKBAlignを提案する。
提案手法は,Q&Aペアやリビジョン提案などの自己注釈付きデータを用いて反復学習を行い,モデルが知識内容を効率的に把握できるようにする。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - Efficient and Deployable Knowledge Infusion for Open-World Recommendations via Large Language Models [53.547190001324665]
大規模言語モデル(LLM)からユーザとアイテムに関する2種類の外部知識を取得するためのREKIを提案する。
個別の知識抽出と個別の知識抽出を,異なるシナリオのスケールに合わせて開発し,オフラインのリソース消費を効果的に削減する。
実験によると、REKIは最先端のベースラインより優れており、多くの推奨アルゴリズムやタスクと互換性がある。
論文 参考訳(メタデータ) (2024-08-20T03:45:24Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
重要な側面は、ユーザやアイテムIDといった高次元の離散的な特徴を低次元連続ベクトルに包含する技法である。
埋め込み技術の適用は複雑なエンティティ関係を捉え、かなりの研究を刺激している。
この調査では、協調フィルタリング、自己教師付き学習、グラフベースのテクニックなどの埋め込み手法を取り上げている。
論文 参考訳(メタデータ) (2023-10-28T06:31:06Z) - Can We Trust AI-Generated Educational Content? Comparative Analysis of
Human and AI-Generated Learning Resources [4.528957284486784]
大規模言語モデル(LLMs)は、大規模に学習教材を迅速に作成する上で、有望なソリューションを提供するように見える。
学習指導活動の一環として,LLMが生み出す資源の質と学生が生み出す資源の質を比較した。
その結果、学生が認識するAI生成リソースの品質は、同僚が生成するリソースの品質と同等であることがわかった。
論文 参考訳(メタデータ) (2023-06-18T09:49:21Z) - Learning To Rank Resources with GNN [7.337247167823921]
本稿では,資源クエリと資源リソースの関係をモデル化可能なグラフニューラルネットワーク(GNN)に基づく学習からランクへのアプローチを提案する。
提案手法は,様々なパフォーマンス指標において,最先端の6.4%から42%を上回っている。
論文 参考訳(メタデータ) (2023-04-17T02:01:45Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
単一画像超解像課題に対する教師/学生アーキテクチャに基づくモデルに依存しないメタ知識蒸留法を提案する。
種々の単一画像超解像データセットを用いた実験により,提案手法は既存の知識表現関連蒸留法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-18T02:41:04Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - Adaptive Scheduling for Machine Learning Tasks over Networks [1.4271989597349055]
本論文では, 線形回帰タスクに資源を効率的に割り当てるアルゴリズムを, データのインフォマティビティ性を利用して検討する。
アルゴリズムは、信頼性の高い性能保証による学習タスクの適応スケジューリングを可能にする。
論文 参考訳(メタデータ) (2021-01-25T10:59:00Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
本稿では,現在のアクティブラーニング技術の主な欠点について分析する。
実世界のデータセットの最も一般的な課題が深層能動学習プロセスに与える影響について,系統的研究を行った。
部分的不確実性サンプリングやより大きいクエリサイズといった,アクティブな学習ループを高速化する2つの手法を導出する。
論文 参考訳(メタデータ) (2020-06-17T14:51:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。