Quantum Circuit Design using a Progressive Widening Monte Carlo Tree Search
- URL: http://arxiv.org/abs/2502.03962v1
- Date: Thu, 06 Feb 2025 10:52:11 GMT
- Title: Quantum Circuit Design using a Progressive Widening Monte Carlo Tree Search
- Authors: Vincenzo Lipardi, Domenica Dibenedetto, Georgios Stamoulis, Mark H. M. Winands,
- Abstract summary: One of the biggest challenges in Variational Quantum Algorithms (VQAs) is designing quantum circuits tailored to the particular problem and to the quantum hardware.
This article proposes a gradient-free Monte Carlo Tree Search (MCTS) technique to automate the process of quantum circuit design.
- Score: 0.7639610349097473
- License:
- Abstract: The performance of Variational Quantum Algorithms (VQAs) strongly depends on the choice of the parameterized quantum circuit to optimize. One of the biggest challenges in VQAs is designing quantum circuits tailored to the particular problem and to the quantum hardware. This article proposes a gradient-free Monte Carlo Tree Search (MCTS) technique to automate the process of quantum circuit design. It introduces a novel formulation of the action space based on a sampling scheme and a progressive widening technique to explore the space dynamically. When testing our MCTS approach on the domain of random quantum circuits, MCTS approximates unstructured circuits under different values of stabilizer R\'enyi entropy. It turns out that MCTS manages to approximate the benchmark quantum states independently from their degree of nonstabilizerness. Next, our technique exhibits robustness across various application domains, including quantum chemistry and systems of linear equations. Compared to previous MCTS research, our technique reduces the number of quantum circuit evaluations by a factor of 10 to 100 while achieving equal or better results. In addition, the resulting quantum circuits have up to three times fewer CNOT gates.
Related papers
- Redesign Quantum Circuits on Quantum Hardware Device [6.627541720714792]
We present a new architecture which enables one to redesign large-scale quantum circuits on quantum hardware.
For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits.
The feasibility of our approach is demonstrated by the excellent results of these applications, which are implemented both in classical computers and current NISQ hardware.
arXiv Detail & Related papers (2024-12-30T12:05:09Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Symmetry-Based Quantum Circuit Mapping [2.51705778594846]
We introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors.
This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation.
arXiv Detail & Related papers (2023-10-27T10:04:34Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Variational Quantum Eigensolver with Reduced Circuit Complexity [3.1158760235626946]
We present a novel approach to reduce quantum circuit complexity in VQE for electronic structure calculations.
Our algorithm, called ClusterVQE, splits the initial qubit space into subspaces (qubit clusters) which are further distributed on individual quantum circuits.
The new algorithm simultaneously reduces the number of qubits and circuit depth, making it a potential leader for quantum chemistry simulations on NISQ devices.
arXiv Detail & Related papers (2021-06-14T17:23:46Z) - Automatically Differentiable Quantum Circuit for Many-qubit State
Preparation [1.5662820454886202]
We propose the automatically differentiable quantum circuit (ADQC) approach to efficiently prepare arbitrary quantum many-qubit states.
The circuit is optimized by updating the latent gates using back propagation to minimize the distance between the evolved and target states.
Our work sheds light on the "intelligent construction" of quantum circuits for many-qubit systems by combining with the machine learning methods.
arXiv Detail & Related papers (2021-04-30T12:22:26Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Variational Quantum Algorithms for Steady States of Open Quantum Systems [2.740982822457262]
We propose a variational quantum algorithm to find the steady state of open quantum systems.
The fidelity between the optimal mixed state and the true steady state is over 99%.
This algorithm is derived from the natural idea of expressing mixed states with purification.
arXiv Detail & Related papers (2020-01-08T14:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.