論文の概要: Analysis of Diffusion Models for Manifold Data
- arxiv url: http://arxiv.org/abs/2502.04339v1
- Date: Sat, 01 Feb 2025 08:14:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-16 04:36:14.091094
- Title: Analysis of Diffusion Models for Manifold Data
- Title(参考訳): マニフォールドデータの拡散モデルの解析
- Authors: Anand Jerry George, Rodrigo Veiga, Nicolas Macris,
- Abstract要約: 生成拡散モデルの時間逆ダイナミクスを解析する。
我々の分析で使われる重要なツールは、一般化線形モデルの相互情報(あるいは自由エネルギー)の正確な公式である。
- 参考スコア(独自算出の注目度): 8.539326630369592
- License:
- Abstract: We analyze the time reversed dynamics of generative diffusion models. If the exact empirical score function is used in a regime of large dimension and exponentially large number of samples, these models are known to undergo transitions between distinct dynamical regimes. We extend this analysis and compute the transitions for an analytically tractable manifold model where the statistical model for the data is a mixture of lower dimensional Gaussians embedded in higher dimensional space. We compute the so-called speciation and collapse transition times, as a function of the ratio of manifold-to-ambient space dimensions, and other characteristics of the data model. An important tool used in our analysis is the exact formula for the mutual information (or free energy) of Generalized Linear Models.
- Abstract(参考訳): 生成拡散モデルの時間逆ダイナミクスを解析する。
正確な経験的スコア関数が、大きな次元と指数関数的に多くのサンプルのレギュレーションで使用される場合、これらのモデルは異なる動的レギュレーション間の遷移を経ることが知られている。
この解析を拡張し、高次元空間に埋め込まれた低次元ガウス多様体の混合である解析的抽出可能な多様体モデルの遷移を計算する。
我々は、多様体-周囲空間次元の比とデータモデルの他の特性の関数として、いわゆる偏差と崩壊遷移時間を計算する。
我々の分析で使われる重要なツールは、一般化線形モデルの相互情報(あるいは自由エネルギー)の正確な公式である。
関連論文リスト
- Continuous Diffusion Model for Language Modeling [57.396578974401734]
離散データに対する既存の連続拡散モデルは、離散的アプローチと比較して性能が限られている。
本稿では,下層の分類分布の幾何学を組み込んだ言語モデリングのための連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-02-17T08:54:29Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
拡散モデルは、ランダムノイズを特徴とする入力場から新しい地質学的実現を生成するために訓練される。
遅延拡散モデルは、ジオモデリングソフトウェアからのサンプルと視覚的に整合した実現を提供する。
論文 参考訳(メタデータ) (2024-06-21T01:32:03Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Dynamical Regimes of Diffusion Models [14.797301819675454]
空間の次元とデータ数が大きい体制における生成拡散モデルについて検討する。
本研究は, 逆向き発生拡散過程における3つの異なる動的状態を明らかにするものである。
崩壊時間の次元とデータ数への依存性は、拡散モデルにおける次元の呪いの徹底的な評価を与える。
論文 参考訳(メタデータ) (2024-02-28T17:19:26Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data [5.00301731167245]
混合領域共分散関数に対する基底関数近似スキームを導出する。
我々は,GPモデルの精度をランタイムのごく一部で正確に近似できることを示す。
また、より小さく、より解釈可能なモデルを得るためのスケーラブルなモデルリダクションワークフローを実証する。
論文 参考訳(メタデータ) (2021-11-03T04:47:37Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。