論文の概要: GaussRender: Learning 3D Occupancy with Gaussian Rendering
- arxiv url: http://arxiv.org/abs/2502.05040v1
- Date: Fri, 07 Feb 2025 16:07:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 18:29:33.213355
- Title: GaussRender: Learning 3D Occupancy with Gaussian Rendering
- Title(参考訳): GaussRender: Gaussian Renderingで3D作業を学ぶ
- Authors: Loick Chambon, Eloi Zablocki, Alexandre Boulch, Mickael Chen, Matthieu Cord,
- Abstract要約: GaussRenderは、Voxelベースの監視を強化する3Dから2Dへのプラグアンドプレイのリジェクション損失である。
提案手法は, 任意の2次元視点に3次元ボクセル表現を投影し, ガウススプラッティングをボクセルの効率的かつ微分可能なレンダリングプロキシとして活用する。
- 参考スコア(独自算出の注目度): 84.60008381280286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the 3D geometry and semantics of driving scenes is critical for developing of safe autonomous vehicles. While 3D occupancy models are typically trained using voxel-based supervision with standard losses (e.g., cross-entropy, Lovasz, dice), these approaches treat voxel predictions independently, neglecting their spatial relationships. In this paper, we propose GaussRender, a plug-and-play 3D-to-2D reprojection loss that enhances voxel-based supervision. Our method projects 3D voxel representations into arbitrary 2D perspectives and leverages Gaussian splatting as an efficient, differentiable rendering proxy of voxels, introducing spatial dependencies across projected elements. This approach improves semantic and geometric consistency, handles occlusions more efficiently, and requires no architectural modifications. Extensive experiments on multiple benchmarks (SurroundOcc-nuScenes, Occ3D-nuScenes, SSCBench-KITTI360) demonstrate consistent performance gains across various 3D occupancy models (TPVFormer, SurroundOcc, Symphonies), highlighting the robustness and versatility of our framework. The code is available at https://github.com/valeoai/GaussRender.
- Abstract(参考訳): 運転シーンの3次元形状と意味を理解することは、安全な自動運転車の開発に不可欠である。
3次元占有モデルは、通常、標準的な損失(例えば、クロスエントロピー、ロヴァス、ダイス)を持つボクセルベースの監督を用いて訓練されるが、これらのアプローチは、ボクセル予測を独立に扱い、空間的関係を無視している。
本稿では,Voxelベースの監視を強化する3D-to-2Dリジェクション・ロスであるGaussRenderを提案する。
提案手法は, 任意の2次元視点に3次元ボクセル表現を投影し, ガウススプラッティングをボクセルの効率的かつ微分可能なレンダリングプロキシとして利用し, 投影要素間の空間依存性を導入する。
このアプローチは意味的整合性と幾何学的整合性を改善し、オクルージョンをより効率的に処理し、アーキテクチャの変更を必要としない。
複数のベンチマーク(SurroundOcc-nuScenes, Occ3D-nuScenes, SSCBench-KITTI360)での大規模な実験は、様々な3D占有モデル(TPVFormer, SurroundOcc, Symphonies)で一貫した性能向上を示し、我々のフレームワークの堅牢性と汎用性を強調している。
コードはhttps://github.com/valeoai/GaussRender.comで公開されている。
関連論文リスト
- GaussianUDF: Inferring Unsigned Distance Functions through 3D Gaussian Splatting [49.60513072330759]
本稿では,3次元ガウスとUDFのギャップを埋める新しい手法を提案する。
私たちのキーとなるアイデアは、表面上の細く平坦な2次元ガウス平面を過度に適合させ、それから自己超越と勾配に基づく推論を活用することである。
我々は, 境界を持つ開放面の精度, 効率, 完全性, シャープ性の観点から, 優位性を示す。
論文 参考訳(メタデータ) (2025-03-25T08:46:55Z) - 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
多視点画像から幾何学的に有意な放射場をモデル化するためのプリミティブとして3次元滑らかな凸を利用した3次元凸法(3DCS)を提案する。
3DCSは、MipNeizer, Tanks and Temples, Deep Blendingなどのベンチマークで、3DGSよりも優れたパフォーマンスを実現している。
本結果は,高品質なシーン再構築のための新しい標準となる3Dコンベクシングの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T14:31:39Z) - Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - GSFusion: Online RGB-D Mapping Where Gaussian Splatting Meets TSDF Fusion [12.964675001994124]
従来の融合アルゴリズムは3次元シーンの空間構造を保存する。
ヴィジュアライゼーションの面では現実主義を欠いていることが多い。
GSFusionはレンダリング品質を犠牲にすることなく計算効率を大幅に向上させる。
論文 参考訳(メタデータ) (2024-08-22T18:32:50Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats [20.833116566243408]
本稿では,Gaussianを3D GANの3次元表現として利用し,その効率的かつ明示的な特徴を活用する。
生成したガウスの位置とスケールを効果的に正規化する階層的多スケールガウス表現を持つジェネレータアーキテクチャを導入する。
実験結果から,最先端の3D一貫したGANと比較して,レンダリング速度(x100)が大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-06-05T05:52:20Z) - 3D-HGS: 3D Half-Gaussian Splatting [5.766096863155448]
シーン3D再構成による写真リアル画像のレンダリングは、3Dコンピュータビジョンの基本的な問題である。
本稿では,プラグイン・アンド・プレイカーネルとして使用できる3Dハーフ・ガウスカーネルを紹介する。
論文 参考訳(メタデータ) (2024-06-04T19:04:29Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
セマンティック・ガウシアン(Semantic Gaussians)は,3次元ガウシアン・スプレイティングをベースとした,新しいオープン語彙シーン理解手法である。
既存の手法とは異なり、様々な2次元意味的特徴を3次元ガウスの新たな意味的構成要素にマッピングする多目的投影手法を設計する。
我々は,高速な推論のために,生の3Dガウスから意味成分を直接予測する3Dセマンティックネットワークを構築した。
論文 参考訳(メタデータ) (2024-03-22T21:28:19Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
Amortized Generative 3D Gaussian framework (AGG) を導入する。
AGGは、共同最適化のための3Dガウス位置およびその他の外観特性の生成を分解する。
本稿では,まず3次元データの粗い表現を生成し,後に3次元ガウス超解像モジュールでアップサンプリングするカスケードパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-08T18:56:33Z) - Compact 3D Scene Representation via Self-Organizing Gaussian Grids [10.816451552362823]
3D Gaussian Splattingは、静的な3Dシーンをモデリングするための非常に有望なテクニックとして最近登場した。
本稿では3DGSのパラメータを局所的均一性を持つ2次元グリッドに整理したコンパクトなシーン表現を提案する。
本手法は,訓練時間の増加を伴わない複雑なシーンに対して,17倍から42倍の縮小係数を実現する。
論文 参考訳(メタデータ) (2023-12-19T20:18:29Z) - HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting [113.37908093915837]
既存の方法は、スコア蒸留サンプリング(SDS)を通じてメッシュやニューラルフィールドのような3D表現を最適化する。
本稿では,高精細な形状とリアルな外観を持つ高品質な3D人間を創出する,効率的かつ効果的な枠組みであるHumanGaussianを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:59:58Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
本稿では,効率的な3D表現の獲得を容易にするために,新しいユニバーサル3D事前学習フレームワークを提案する。
PonderV2は、11の室内および屋外ベンチマークで最先端のパフォーマンスを達成したことで、その効果が示唆された。
論文 参考訳(メタデータ) (2023-10-12T17:59:57Z) - Text-to-3D using Gaussian Splatting [18.163413810199234]
本稿では,最新の最先端表現であるガウススプラッティングをテキストから3D生成に適用する新しい手法であるGSGENを提案する。
GSGENは、高品質な3Dオブジェクトを生成し、ガウススティングの明示的な性質を活用することで既存の欠点に対処することを目的としている。
我々の手法は繊細な細部と正確な形状で3Dアセットを生成することができる。
論文 参考訳(メタデータ) (2023-09-28T16:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。