論文の概要: Adaptive Graph of Thoughts: Test-Time Adaptive Reasoning Unifying Chain, Tree, and Graph Structures
- arxiv url: http://arxiv.org/abs/2502.05078v1
- Date: Fri, 07 Feb 2025 16:54:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 18:29:33.2311
- Title: Adaptive Graph of Thoughts: Test-Time Adaptive Reasoning Unifying Chain, Tree, and Graph Structures
- Title(参考訳): Adaptive Graph of Thoughts: Test-Time Adaptive Reasoning Unification Chain, Tree, Graph Structures
- Authors: Tushar Pandey, Ara Ghukasyan, Oktay Goktas, Santosh Kumar Radha,
- Abstract要約: 本稿では,動的グラフベースの推論フレームワークであるAdaptive Graph of Thoughts (AGoT)を紹介する。
AGoTはテスト時間のみでのLarge Language Models (LLM)推論を強化する。
マルチホップ検索,科学的推論,数学的問題解決にまたがる多様なベンチマークに対するアプローチを検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, yet their performance is highly dependent on the prompting strategy and model scale. While reinforcement learning and fine-tuning have been deployed to boost reasoning, these approaches incur substantial computational and data overhead. In this work, we introduce Adaptive Graph of Thoughts (AGoT), a dynamic, graph-based inference framework that enhances LLM reasoning solely at test time. Rather than relying on fixed-step methods like Chain of Thought (CoT) or Tree of Thoughts (ToT), AGoT recursively decomposes complex queries into structured subproblems, forming an dynamic directed acyclic graph (DAG) of interdependent reasoning steps. By selectively expanding only those subproblems that require further analysis, AGoT unifies the strengths of chain, tree, and graph paradigms into a cohesive framework that allocates computation where it is most needed. We validate our approach on diverse benchmarks spanning multi-hop retrieval, scientific reasoning, and mathematical problem-solving, achieving up to 46.2% improvement on scientific reasoning tasks (GPQA) - comparable to gains achieved through computationally intensive reinforcement learning approaches and outperforming state-of-the-art iterative approaches. These results suggest that dynamic decomposition and structured recursion offer a scalable, cost-effective alternative to post-training modifications, paving the way for more robust, general-purpose reasoning in LLMs.
- Abstract(参考訳): 大きな言語モデル(LLM)は印象的な推論能力を示していますが、そのパフォーマンスはプロンプト戦略とモデルスケールに大きく依存しています。
推論を促進するために強化学習と微調整が展開されているが、これらのアプローチはかなりの計算とデータのオーバーヘッドを発生させる。
本稿では,テスト時にのみLSM推論を強化する動的グラフベースの推論フレームワークであるAdaptive Graph of Thoughts(AGoT)を紹介する。
CoT(Chain of Thought)やToT(Tree of Thoughts)のような固定ステップの手法に頼るのではなく、AGoTは複雑なクエリを構造化サブプロブレムに再帰的に分解し、相互依存的推論ステップの動的指向非巡回グラフ(DAG)を形成する。
さらなる分析を必要とするサブプロブレムのみを選択的に拡張することにより、AGoTはチェーン、ツリー、グラフのパラダイムの強みを結合的なフレームワークに統合し、最も必要な計算を割り当てる。
我々は,マルチホップ検索,科学的推論,数学的問題解決にまたがる多様なベンチマークに対するアプローチを検証し,科学的推論タスク(GPQA)の46.2%の改善を実現した。
これらの結果から, 動的分解と構造的再帰は, LLMのより堅牢で汎用的な推論への道を開いた後処理の代替として, スケーラブルで費用対効果の高い代替手段となることが示唆された。
関連論文リスト
- Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な機能を示した。
OpenAI o1とDeepSeek-R1の最近の進歩は、System-2推論ドメインのパフォーマンスをさらに改善した。
論文 参考訳(メタデータ) (2025-03-20T17:59:38Z) - Dynamic Parallel Tree Search for Efficient LLM Reasoning [102.16694475391665]
Tree of Thoughts (ToT) は大規模言語モデル(LLM)推論を強化し、分散木としての問題解決を構造化する。
推論における推論経路を動的に最適化することを目的とした,新しい並列化フレームワークであるDynamic Parallel Tree Search (DPTS)を提案する。
Qwen-2.5とLlama-3のMath500とGSM8Kデータセットによる実験では、DPTSは平均で2-4倍効率が向上した。
論文 参考訳(メタデータ) (2025-02-22T14:13:37Z) - Policy Guided Tree Search for Enhanced LLM Reasoning [3.090041654375235]
Policy-Guided Tree Search (PGTS)は、強化学習と構造化木探索を組み合わせて推論経路を効率的にナビゲートするフレームワークである。
私たちの重要なイノベーションは、手作業や徹底的な検索の必要性をなくし、拡大、分岐、追跡、探索の終了を動的に決定する、学習されたポリシーです。
論文 参考訳(メタデータ) (2025-02-04T22:08:20Z) - Causal Graphs Meet Thoughts: Enhancing Complex Reasoning in Graph-Augmented LLMs [4.701165676405066]
関連情報を検索するだけでなく、因果推論や説明可能性の提供も重要である。
本稿では,大きな知識グラフをフィルタして原因効果エッジを強調する新しいパイプラインを提案する。
医学的質問応答タスクの実験では、一貫した利得を示し、最大10%の絶対的な改善がある。
論文 参考訳(メタデータ) (2025-01-24T19:31:06Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
グラフの構造と表現を学習するための生成訓練と識別訓練のジョイントに基づく教師なし手法を提案する。
本稿では,ECL-GSR(Energy-based Contrastive Learning)によるグラフ構造再構成(GSR)フレームワークを提案する。
ECL-GSRは、主要なベースラインに対するサンプルやメモリの少ない高速なトレーニングを実現し、下流タスクの単純さと効率性を強調している。
論文 参考訳(メタデータ) (2024-12-20T04:05:09Z) - Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation [68.58373854950294]
我々は因果推論に焦点をあて,相関情報に基づく因果関係の確立という課題に対処する。
この問題に対して,元のタスクを固定的なサブクエストに分割するプロンプト戦略を導入する。
既存の因果ベンチマークであるCorr2Causeに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-12-18T15:32:27Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
我々はフォレスト・オブ・サート(FoT)と呼ばれる新しい推論フレームワークを提案する。
FoTは複数の推論木を統合し、複雑な論理問題を解くために集合的な意思決定を活用する。
本稿では,リアルタイムの誤り訂正を可能にする動的自己補正戦略と,コンセンサス誘導による意思決定戦略を導入する。
論文 参考訳(メタデータ) (2024-12-12T09:01:18Z) - BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving [11.596474985695679]
我々は、完全な数学的モデリングプロセスをキャプチャする包括的ラベルを付したStructuredORデータセットをリリースする。
本稿では,強化学習をツリー・オブ・シント構造に統合するアルゴリズムであるBPP-Searchを提案する。
木に基づく推論では、BPP-Searchは精度と効率が優れ、正しい解の高速な検索を可能にする。
論文 参考訳(メタデータ) (2024-11-26T13:05:53Z) - LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data [51.47827479376251]
LOCALは動的因果構造を復元するための効率的で実装が容易で制約のない手法である。
Asymptotic Causal Learning Mask (ACML) と Dynamic Graph Learning (DGPL)
合成および実世界のデータセットの実験では、LOCALが既存の手法よりも大幅に優れていることが示されている。
論文 参考訳(メタデータ) (2024-10-25T10:48:41Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
本稿では,動的かつ反復的なフレームワークであるAdaptive Promptingを紹介する。
その結果、Adaptive Promptingは、算術的推論(GSM8K、MultiArithm)、論理的推論、コモンセンスタスクなど、様々な推論ベンチマークのパフォーマンスを著しく向上させることを示した。
提案手法は,計算効率を維持しつつ,GPT-4などの大規模モデルと競合する性能を実現する。
論文 参考訳(メタデータ) (2024-10-10T17:14:36Z) - Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks [68.49251303172674]
最先端の大規模言語モデル(LLM)は、目覚ましい問題解決能力を示すが、複雑な推論と事実の正しさに苦慮する可能性がある。
既存の手法では、チェーン・オブ・ソートと検索強化生成(RAG)の強みを利用して、複雑な問題をより単純なステップに分解し、検索を適用して事実の正しさを向上させる。
CR-Planner(CR-Planner, CR-Planner, CR-Planner)は, 微調整された批判モデルを利用して, 推論と検索の両方のプロセスを計画を通してガイドする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-02T11:26:02Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
最近の研究は、複数の推論チェーンをサンプリングし、応答周波数に基づいてアンサンブルすることで、Large Language Models(LLMs)の推論性能を向上させる。
このアプローチは、正しい答えが少数派である場合に失敗する。
階層的推論集約フレームワークAoRを導入し、推論連鎖の評価に基づいて回答を選択する。
論文 参考訳(メタデータ) (2024-05-21T17:12:19Z) - SEER: Facilitating Structured Reasoning and Explanation via Reinforcement Learning [29.514755268807868]
構造的推論と説明を容易にする構造的回帰を最大化する新しい手法であるSEERを提案する。
提案手法は構造的推論に固有の階層構造と分岐構造を正確に記述する。
実験の結果,SEERは最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-01-24T06:10:51Z) - Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Language Models [74.40196814292426]
本稿では,人間の思考過程をチェーンとしてだけでなく,グラフとしてモデル化するグラフ・オブ・ソート(GoT)推論を提案する。
GoTは人間の思考の連続しない性質を捉え、思考プロセスのより現実的なモデリングを可能にします。
テキストのみの推論タスクとマルチモーダル推論タスクでGoTの性能を評価する。
論文 参考訳(メタデータ) (2023-05-26T02:15:09Z) - QAGCN: Answering Multi-Relation Questions via Single-Step Implicit Reasoning over Knowledge Graphs [12.354648004427824]
マルチリレーション質問応答(QA)は難しい課題である。
KGに対する明示的な多段階推論を持つ最近の手法はこの課題で顕著に用いられている。
マルチリレーショナルQAは、エンド・ツー・エンドのシングルステップの暗黙の推論によって達成できると論じる。
論文 参考訳(メタデータ) (2022-06-03T21:01:48Z) - Multi-task Learning of Order-Consistent Causal Graphs [59.9575145128345]
我々は、$K関連ガウス非巡回グラフ(DAG)の発見問題を考える。
マルチタスク学習環境下では, 線形構造方程式モデルを学習するためのMLE ($l_1/l$-regularized maximum chance estimator) を提案する。
理論的には、関係するタスクにまたがるデータを活用することで、因果順序を復元する際のサンプルの複雑さをより高めることができることを示す。
論文 参考訳(メタデータ) (2021-11-03T22:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。