Learning Memory and Material Dependent Constitutive Laws
- URL: http://arxiv.org/abs/2502.05463v1
- Date: Sat, 08 Feb 2025 06:08:45 GMT
- Title: Learning Memory and Material Dependent Constitutive Laws
- Authors: Kaushik Bhattacharya, Lianghao Cao, George Stepaniants, Andrew Stuart, Margaret Trautner,
- Abstract summary: This paper focuses on the joint learning problem and proposes a novel neural operator framework to address it.<n>The theoretical properties of the cell problem in this Kelvin-Voigt setting are used to motivate the proposed general neural operator framework.
- Score: 4.7661570520340675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The theory of homogenization provides a systematic approach to the derivation of macroscale constitutive laws, obviating the need to repeatedly resolve complex microstructure. However, the unit cell problem that defines the constitutive model is typically not amenable to explicit evaluation. It is therefore of interest to learn constitutive models from data generated by the unit cell problem. Many viscoelastic and elastoviscoplastic materials are characterized by memory-dependent constitutive laws. In order to amortize the computational investment in finding such memory-dependent constitutive laws, it is desirable to learn their dependence on the material microstructure. While prior work has addressed learning memory dependence and material dependence separately, their joint learning has not been considered. This paper focuses on the joint learning problem and proposes a novel neural operator framework to address it. In order to provide firm foundations, the homogenization problem for linear Kelvin-Voigt viscoelastic materials is studied. The theoretical properties of the cell problem in this Kelvin-Voigt setting are used to motivate the proposed general neural operator framework; these theoretical properties are also used to prove a universal approximation theorem for the learned macroscale constitutive model. This formulation of learnable constitutive models is then deployed beyond the Kelvin-Voigt setting. Numerical experiments are presented showing that the resulting data-driven methodology accurately learns history- and microstructure-dependent linear viscoelastic and nonlinear elastoviscoplastic constitutive models, and numerical results also demonstrate that the resulting constitutive models can be deployed in macroscale simulation of material deformation.
Related papers
- Can Diffusion Models Disentangle? A Theoretical Perspective [52.360881354319986]
This paper presents a novel theoretical framework for understanding how diffusion models can learn disentangled representations.<n>We establish identifiability conditions for general disentangled latent variable models, analyze training dynamics, and derive sample complexity bounds for disentangled latent subspace models.
arXiv Detail & Related papers (2025-03-31T20:46:18Z) - Causal Discovery from Data Assisted by Large Language Models [50.193740129296245]
It is essential to integrate experimental data with prior domain knowledge for knowledge driven discovery.
Here we demonstrate this approach by combining high-resolution scanning transmission electron microscopy (STEM) data with insights derived from large language models (LLMs)
By fine-tuning ChatGPT on domain-specific literature, we construct adjacency matrices for Directed Acyclic Graphs (DAGs) that map the causal relationships between structural, chemical, and polarization degrees of freedom in Sm-doped BiFeO3 (SmBFO)
arXiv Detail & Related papers (2025-03-18T02:14:49Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
We present a framework for multiscale structures with spatially varying microstructural symmetry and differentiably different microstructural descriptors.
Our findings highlight the potential of integrating consistency with density-based design optimization.
arXiv Detail & Related papers (2024-08-25T14:17:43Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
A hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated.
The proposed model benefits from the physics-based knowledge contained in the models used in the full-order micromodel by embedding them in a neural network.
arXiv Detail & Related papers (2024-04-05T12:40:03Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning Homogenization for Elliptic Operators [5.151892549395954]
Multiscale partial differential equations (PDEs) arise in various applications, and several schemes have been developed to solve them efficiently.
Homogenization theory is a powerful methodology that eliminates the small-scale dependence, resulting in simplified equations that are tractable.
This paper investigates the learnability of homogenized laws for elliptic operators in the presence of such complexities.
arXiv Detail & Related papers (2023-06-21T04:05:10Z) - A Neural Network Transformer Model for Composite Microstructure Homogenization [1.2277343096128712]
Homogenization methods, such as the Mori-Tanaka method, offer rapid homogenization for a wide range of constituent properties.
This paper illustrates a transformer neural network architecture that captures the knowledge of various microstructures.
The network predicts the history-dependent, non-linear, and homogenized stress-strain response.
arXiv Detail & Related papers (2023-04-16T19:57:52Z) - Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes [51.84122462615402]
We introduce a novel method to learn the structure and mechanisms of the causal model using Variational Bayes-DAG-GFlowNet.
We extend the method of Bayesian causal structure learning using GFlowNets to learn the parameters of a linear-Gaussian model.
arXiv Detail & Related papers (2022-11-04T21:57:39Z) - Scientific Machine Learning for Modeling and Simulating Complex Fluids [0.0]
rheological equations relate internal stresses and deformations in complex fluids.
Data-driven models provide accessible alternatives to expensive first-principles models.
Development of similar models for complex fluids has lagged.
arXiv Detail & Related papers (2022-10-10T04:35:31Z) - Constitutive model characterization and discovery using physics-informed
deep learning [0.0]
We propose a novel approach based on the physics-informed learning machines for the characterization and discovery of models.
We demonstrate that our proposed framework can efficiently identify the underlying model describing datasets different from the von Mises family.
arXiv Detail & Related papers (2022-03-18T08:10:02Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
Multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of inelastic materials.
Data-driven approaches based on deep learning have risen as a promising alternative to replace ad-hoc laws and speed-up numerical methods.
Here, we propose Thermodynamics-based Artificial Neural Networks (TANN) for the modeling of mechanical materials with inelastic and complex microstructure.
arXiv Detail & Related papers (2021-08-30T11:50:38Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.