Latent Structure Modulation in Large Language Models Through Stochastic Concept Embedding Transitions
- URL: http://arxiv.org/abs/2502.05553v1
- Date: Sat, 08 Feb 2025 12:53:52 GMT
- Title: Latent Structure Modulation in Large Language Models Through Stochastic Concept Embedding Transitions
- Authors: Stefan Whitaker, Colin Sisate, Marcel Windsor, Nikolai Fairweather, Tarquin Goldborough, Oskar Lindenfeld,
- Abstract summary: embedding transitions introduce a probabilistic mechanism for adjusting token representations dynamically during inference.
A transition framework was proposed in which each token embedding evolved through probabilistic updates.
Empirical evaluations demonstrated greater lexical diversity, improved generative coherence, and enhanced retention of low-frequency vocabulary.
- Score: 0.0
- License:
- Abstract: Stochastic embedding transitions introduce a probabilistic mechanism for adjusting token representations dynamically during inference, mitigating the constraints imposed through static or deterministic embeddings. A transition framework was proposed in which each token embedding evolved through probabilistic updates, ensuring adaptability while preserving semantic integrity across linguistic contexts. Empirical evaluations demonstrated that models incorporating stochastic transitions exhibited greater lexical diversity, improved generative coherence, and enhanced retention of low-frequency vocabulary, contributing to more varied sentence structures and reduced reliance on high-probability token selections. Statistical analyses of embedding drift across transformer layers indicated that representations evolved more flexibly without losing coherence, supporting the hypothesis that controlled stochasticity facilitated context-sensitive representation learning. Experimental results revealed that probabilistic embeddings introduced minor computational overhead while maintaining generative efficiency, reinforcing their feasibility in large-scale applications. A comparative study with traditional embedding approaches highlighted measurable gains in text completion accuracy, dialogue coherence, and structural complexity, confirming the effectiveness of stochastic transitions in enhancing representation expressiveness. Clustering patterns in the embedding space suggested that probabilistic updates preserved meaningful semantic groupings while enabling context-driven shifts, further validating the stability of the transition mechanism. Performance metrics indicated that stochastic transitions balanced adaptability and control, ensuring that generative outputs remained linguistically coherent without excessive randomness.
Related papers
- FELLE: Autoregressive Speech Synthesis with Token-Wise Coarse-to-Fine Flow Matching [51.32059240975148]
FELLE is an autoregressive model that integrates language modeling with token-wise flow matching.
For each continuous-valued token, FELLE modifies the general prior distribution in flow matching by incorporating information from the previous step.
FELLE generates continuous-valued tokens hierarchically, conditioned on the language model's output.
arXiv Detail & Related papers (2025-02-16T13:54:32Z) - Probabilistic Lexical Manifold Construction in Large Language Models via Hierarchical Vector Field Interpolation [0.0]
The proposed methodology constructs a probabilistic function space where word representations adhere to topological consistency.
Probability constraints enhance lexical coherence by refining contextual relationships, leading to improvements in semantic stability across multiple linguistic distributions.
An assessment of computational efficiency reveals that while representations introduces minor processing overhead, the structured representation learning approach remains scalable for practical deployment.
arXiv Detail & Related papers (2025-02-14T08:47:10Z) - Probabilistic Subspace Manifolds for Contextual Inference in Large Language Models [0.0]
Representing token embeddings as probability distributions allows for more flexible contextual inference.
Probability embeddings improve neighborhood consistency and decrease redundancy.
Probability embeddings preserve contextual integrity even under robustness-based evaluation scenarios.
arXiv Detail & Related papers (2025-02-07T21:32:32Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
The organization of latent token representations plays a crucial role in determining the stability, generalization, and contextual consistency of language models.
A hierarchical alignment method was introduced to token embeddings without altering core model weights.
Experimental evaluations demonstrated improvements in rare token retrieval, adversarial, and long-range dependency tracking.
arXiv Detail & Related papers (2025-02-06T04:01:27Z) - Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement [0.0]
Latent Lexical Projection (LLP) is introduced to refine lexical representations through a structured transformation into a latent space.
LLP integrates an optimized projection mechanism within an existing language model architecture.
Evaluations indicate a reduction in perplexity and an increase in BLEU scores, suggesting improvements in predictive accuracy and fluency.
arXiv Detail & Related papers (2025-02-03T23:18:53Z) - Contextual Morphogenesis in Large Language Models: A Novel Approach to Self-Organizing Token Representations [0.0]
contextual morphogenesis establishes a self-organizing mechanism that restructures token boundaries based on learned contextual dependencies.
Empirical evaluations demonstrate that dynamically adjusted tokenization contributes to reductions in perplexity while maintaining representational stability.
Comparative assessments across different linguistic corpora suggest that adaptive tokenization preserves interpretability while improving alignment with contextual cues.
The effectiveness of contextual morphogenesis in refining structural stability and predictive performance highlights its viability as an alternative to traditional tokenization methods.
arXiv Detail & Related papers (2025-02-01T03:50:46Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Flow Factorized Representation Learning [109.51947536586677]
We introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations.
We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models.
arXiv Detail & Related papers (2023-09-22T20:15:37Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
This paper defines the variation predictability of latent disentangled representations.
Within an adversarial generation process, we encourage variation predictability by maximizing the mutual information between latent variations and corresponding image pairs.
We develop an evaluation metric that does not rely on the ground-truth generative factors to measure the disentanglement of latent representations.
arXiv Detail & Related papers (2020-07-25T08:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.