論文の概要: Attainability of Two-Point Testing Rates for Finite-Sample Location Estimation
- arxiv url: http://arxiv.org/abs/2502.05730v1
- Date: Sun, 09 Feb 2025 00:17:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:21.779384
- Title: Attainability of Two-Point Testing Rates for Finite-Sample Location Estimation
- Title(参考訳): 有限サンプル位置推定のための二点試験速度の達成可能性
- Authors: Spencer Compton, Gregory Valiant,
- Abstract要約: LeCamの2点試験法は、分布の平均を推定する最も単純な下界を与える。
本研究では,2点検定の下限を達成できる条件について検討する。
2点検定率は対称な単調分布であってもほぼ達成不可能であることを示す。
- 参考スコア(独自算出の注目度): 13.535770763481906
- License:
- Abstract: LeCam's two-point testing method yields perhaps the simplest lower bound for estimating the mean of a distribution: roughly, if it is impossible to well-distinguish a distribution centered at $\mu$ from the same distribution centered at $\mu+\Delta$, then it is impossible to estimate the mean by better than $\Delta/2$. It is setting-dependent whether or not a nearly matching upper bound is attainable. We study the conditions under which the two-point testing lower bound can be attained for univariate mean estimation; both in the setting of location estimation (where the distribution is known up to translation) and adaptive location estimation (unknown distribution). Roughly, we will say an estimate nearly attains the two-point testing lower bound if it incurs error that is at most polylogarithmically larger than the Hellinger modulus of continuity for $\tilde{\Omega}(n)$ samples. Adaptive location estimation is particularly interesting as some distributions admit much better guarantees than sub-Gaussian rates (e.g. $\operatorname{Unif}(\mu-1,\mu+1)$ permits error $\Theta(\frac{1}{n})$, while the sub-Gaussian rate is $\Theta(\frac{1}{\sqrt{n}})$), yet it is not obvious whether these rates may be adaptively attained by one unified approach. Our main result designs an algorithm that nearly attains the two-point testing rate for mixtures of symmetric, log-concave distributions with a common mean. Moreover, this algorithm runs in near-linear time and is parameter-free. In contrast, we show the two-point testing rate is not nearly attainable even for symmetric, unimodal distributions. We complement this with results for location estimation, showing the two-point testing rate is nearly attainable for unimodal distributions, but unattainable for symmetric distributions.
- Abstract(参考訳): 概して、$\mu$ を中心とする分布を$\mu+\Delta$ を中心とする同じ分布から適切に区別することは不可能であれば、$\Delta/2$ よりも高く見積もることは不可能である。
ほぼ一致する上界が達成可能であるか否かは、設定依存である。
本研究では,2点検定下限が一変量平均推定に到達できる条件について検討し,位置推定の設定(分布が翻訳で知られている)と適応位置推定(未知分布)について検討した。
大まかに言えば、$\tilde{\Omega}(n)$の連続性のヘルリンガー率よりも最も大きい誤差が生じるとすると、2点検定の下界がほぼ達成される。
適応的位置推定(Adaptive location estimation)は、サブガウスの速度よりもはるかに優れた保証(例: g $\operatorname{Unif}(\mu-1,\mu+1)$ allows error $\Theta(\frac{1}{n})$, 一方、サブガウスの速度は $\Theta(\frac{1}{\sqrt{n}})$)$ である。
本研究の主な成果は、対称な対数凹分布と共通平均の混合の2点試験率をほぼ達成できるアルゴリズムを設計することである。
さらに、このアルゴリズムはほぼ線形時間で動作し、パラメータフリーである。
対照的に、2点検定速度は対称な単調分布であってもほぼ達成不可能であることを示す。
位置推定の結果を補完し、二点検定率は単調分布ではほぼ達成可能であるが、対称分布では達成できないことを示す。
関連論文リスト
- Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
距離の新しい族、相対翻訳不変ワッサーシュタイン距離(RW_p$)を導入する。
我々は、$RW_p 距離もまた、分布変換に不変な商集合 $mathcalP_p(mathbbRn)/sim$ 上で定義される実距離測度であることを示す。
論文 参考訳(メタデータ) (2024-09-04T03:41:44Z) - Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions [11.222970035173372]
カーネルベースのスコア推定器は$widetildeOleft(n-1 t-fracd+22(tfracd2 vee 1)rightの最適平均二乗誤差を達成する
核を用いたスコア推定器は,拡散モデルで生成した試料の分布の総変動誤差に対して,極小ガウスの下での最大平均2乗誤差を$widetildeOleft(n-1/2 t-fracd4right)$上界で達成することを示す。
論文 参考訳(メタデータ) (2024-02-23T20:51:31Z) - Optimal score estimation via empirical Bayes smoothing [13.685846094715364]
未知確率分布$rho*$のスコア関数を$n$独立分布および$d$次元における同一分布観測から推定する問題について検討する。
ガウスカーネルに基づく正規化スコア推定器は、一致するミニマックス下界によって最適に示され、この値が得られることを示す。
論文 参考訳(メタデータ) (2024-02-12T16:17:40Z) - Optimality in Mean Estimation: Beyond Worst-Case, Beyond Sub-Gaussian,
and Beyond $1+\alpha$ Moments [10.889739958035536]
本稿では,アルゴリズムの微細な最適性を分析するための新しい定義フレームワークを提案する。
平均値の中央値は近傍最適であり, 一定の要因が得られている。
定数係数のずれのない近傍分離推定器を見つけることは自由である。
論文 参考訳(メタデータ) (2023-11-21T18:50:38Z) - $L^1$ Estimation: On the Optimality of Linear Estimators [64.76492306585168]
この研究は、条件中央値の線型性を誘導する$X$上の唯一の先行分布がガウス分布であることを示している。
特に、条件分布 $P_X|Y=y$ がすべての$y$に対して対称であるなら、$X$ はガウス分布に従う必要がある。
論文 参考訳(メタデータ) (2023-09-17T01:45:13Z) - Robust Mean Estimation Without Moments for Symmetric Distributions [7.105512316884493]
大規模な対称分布に対して、ガウス的設定と同じ誤差を効率的に達成できることが示される。
この最適誤差にアプローチする効率的なアルゴリズムの列を提案する。
我々のアルゴリズムは、よく知られたフィルタリング手法の一般化に基づいている。
論文 参考訳(メタデータ) (2023-02-21T17:52:23Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
低忠実度状態におけるノイズランダム量子回路の測定結果の分布について検討する。
十分に弱くユニタリな局所雑音に対して、一般的なノイズ回路インスタンスの出力分布$p_textnoisy$間の相関(線形クロスエントロピーベンチマークで測定)は指数関数的に減少する。
ノイズが不整合であれば、出力分布は、正確に同じ速度で均一分布の$p_textunif$に近づく。
論文 参考訳(メタデータ) (2021-11-29T19:26:28Z) - Robust Learning of Optimal Auctions [84.13356290199603]
本研究では、入札者の評価値のサンプルを逆向きに破損させたり、逆向きに歪んだ分布から引き出すことができる場合に、サンプルから収益-最適マルチバイダオークションを学習する問題について検討する。
我々は,コルモゴロフ-スミルノフ距離における元の分布に対して$alpha$-closeの「全ての真の分布」に対して,収入がほぼ同時に最適であるメカニズムを学習できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-13T17:37:21Z) - Optimal Sub-Gaussian Mean Estimation in $\mathbb{R}$ [5.457150493905064]
ガウス下収束を考慮した新しい推定器を提案する。
我々の推定器はその分散に関する事前の知識を必要としない。
我々の推定器の構成と分析は、他の問題に一般化可能なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-11-17T02:47:24Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。