論文の概要: HamRaz: A Culture-Based Persian Conversation Dataset for Person-Centered Therapy Using LLM Agents
- arxiv url: http://arxiv.org/abs/2502.05982v2
- Date: Wed, 03 Sep 2025 20:08:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 16:09:03.353364
- Title: HamRaz: A Culture-Based Persian Conversation Dataset for Person-Centered Therapy Using LLM Agents
- Title(参考訳): HamRaz: LLMエージェントを用いた人中心療法のための文化ベースのペルシア語会話データセット
- Authors: Mohammad Amin Abbasi, Farnaz Sadat Mirnezami, Ali Neshati, Hassan Naderi,
- Abstract要約: HamRazは、パーソナリティセンタード・セラピー(PCT)におけるAI支援型メンタルヘルス支援のためのデータセット
スクリプトベースの対話とLLM(Adaptive Large Language Model)ロールプレイングを組み合わせることで、ペルシア語を話すクライアントのあいまいさと感情的なニュアンスを捉える。
人間の評価は、ハムラズが共感、コヒーレンス、リアリズムにおいて既存のベースラインを上回っていることを示している。
- 参考スコア(独自算出の注目度): 4.192622517351801
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present HamRaz, a culturally adapted Persian-language dataset for AI-assisted mental health support, grounded in Person-Centered Therapy (PCT). To reflect real-world therapeutic challenges, we combine script-based dialogue with adaptive large language models (LLM) role-playing, capturing the ambiguity and emotional nuance of Persian-speaking clients. We introduce HamRazEval, a dual-framework for assessing conversational and therapeutic quality using General Metrics and specialized psychological relationship measures. Human evaluations show HamRaz outperforms existing baselines in empathy, coherence, and realism. This resource contributes to the Digital Humanities by bridging language, culture, and mental health in underrepresented communities.
- Abstract(参考訳): 我々は、人中心療法(PCT)を基盤とした、AI支援精神保健支援のための文化に適応したペルシア語データセットであるHamRazを提示する。
実世界の治療課題を反映するために,スクリプトベースの対話と適応型大言語モデル(LLM)を組み合わせ,ペルシア語を話すクライアントのあいまいさと感情的なニュアンスを捉える。
本稿では,ジェネラル・メトリックス(General Metrics)と特殊心理関連尺度を用いて,会話品質と治療品質を評価するための2つのフレームワークであるHamRazEvalを紹介する。
人間の評価は、ハムラズが共感、コヒーレンス、リアリズムにおいて既存のベースラインを上回っていることを示している。
この資料は、表現不足のコミュニティにおいて、言語、文化、精神的健康をブリッジすることで、デジタル・ヒューマニティに寄与する。
関連論文リスト
- Reframe Your Life Story: Interactive Narrative Therapist and Innovative Moment Assessment with Large Language Models [92.93521294357058]
物語療法は、個人が問題のある人生の物語を代替品の力に変えるのに役立つ。
現在のアプローチでは、特殊精神療法ではリアリズムが欠如しており、時間とともに治療の進行を捉えることができない。
Int(Interactive Narrative Therapist)は、治療段階を計画し、反射レベルを誘導し、文脈的に適切な専門家のような反応を生成することによって、専門家の物語セラピストをシミュレートする。
論文 参考訳(メタデータ) (2025-07-27T11:52:09Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Applying LLM and Topic Modelling in Psychotherapeutic Contexts [44.99833362998488]
本論文は、機械学習に基づくトピックモデリングツールであるBERTopicを、セラピストの2つの異なるグループの対話に適用することに焦点を当てている。
その結果、セラピストのスピーチにおいて最も一般的で安定したトピックが強調され、治療における言語パターンがどのように発達し、様々な治療スタイルで安定するかについての洞察が得られた。
論文 参考訳(メタデータ) (2024-12-23T10:14:32Z) - Advancing Conversational Psychotherapy: Integrating Privacy, Dual-Memory, and Domain Expertise with Large Language Models [0.8563446809549775]
メンタルヘルスは、伝統的な会話精神療法の限界を明らかにする世界的な問題となっている。
心理療法へのアクセスを民主化するために設計されたLarge Language Model (LLM)対応チャットボットであるSoulSpeakを紹介する。
論文 参考訳(メタデータ) (2024-12-04T03:02:46Z) - Script-Strategy Aligned Generation: Aligning LLMs with Expert-Crafted Dialogue Scripts and Therapeutic Strategies for Psychotherapy [17.07905574770501]
現在のシステムは厳格で規則に基づく設計に依存しており、治療的会話を導くために専門家が作成したスクリプトに大きく依存している。
大規模言語モデル(LLM)の最近の進歩は、より柔軟な相互作用の可能性を提供するが、制御性と透明性は欠如している。
完全にスクリプト化されたコンテンツへの依存を減らすフレキシブルなアライメントアプローチである Script-Strategy Aligned Generation (SSAG)' を提案する。
論文 参考訳(メタデータ) (2024-11-11T05:14:14Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Emotion-Aware Response Generation Using Affect-Enriched Embeddings with LLMs [0.585143166250719]
本研究は,精神医学的応用における大規模言語モデル(LLM)の感情的・文脈的理解を高めることの課題に対処する。
LLAMA 2、Flan-T5、ChatGPT 3.0、ChatGPT 4.0といった最先端のLLMと、複数の感情レキシコンを統合する新しいフレームワークを導入する。
一次データセットは、カウンセリング・アンド・サイコセラピー・データベースから2000以上の治療セッションの書き起こしを含み、不安、うつ病、トラウマ、中毒に関する議論をカバーしている。
論文 参考訳(メタデータ) (2024-10-02T08:01:05Z) - Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT [6.932239020477335]
大規模言語モデル(LLM)はアドホックセラピストとして使われている。
本研究は,ヒトカウンセラーのセッションレベルの行動と,同僚のチームが単一セッション認知行動療法を行うように促したLDMの行動とを比較した。
論文 参考訳(メタデータ) (2024-09-03T19:19:13Z) - COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling [14.04866656172336]
心理療法セッションで使用される自然言語から治療作業同盟を推定するための新しい枠組みを提案する。
提案手法は,高度大規模言語モデル(LLM)を用いて心理療法セッションの転写を解析し,それらをワーキングアライアンスインベントリにおけるステートメントの分散表現と比較する。
論文 参考訳(メタデータ) (2024-02-22T16:56:44Z) - LLM Agents in Interaction: Measuring Personality Consistency and
Linguistic Alignment in Interacting Populations of Large Language Models [4.706971067968811]
簡単な変数誘導サンプリングアルゴリズムを用いて,大規模言語モデル (LLM) エージェントの2群集団を作成する。
人格検査を行ない、共同作業にエージェントを提出し、異なるプロファイルが会話相手に対して異なるレベルの人格整合性および言語的整合性を示すことを確認する。
論文 参考訳(メタデータ) (2024-02-05T11:05:20Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
本研究では,高機能自閉症青年に対する対話型言語治療におけるLarge Language Models(LLMs)の有効性について検討した。
LLMは、従来の心理学的カウンセリング手法を強化する新しい機会を提供する。
論文 参考訳(メタデータ) (2023-11-12T07:55:39Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
大規模言語モデル(LLM)は、多くの自然言語タスクに対する強力で一般的な解決策として登場した。
しかしながら、言語生成の最も重要なアプリケーションの多くは対話的であり、エージェントは望ましい結果に達するために相手と話し合わなければならない。
本研究では,そのような目標指向対話に対して,RLでLLMを適応させる新しい手法について検討する。
論文 参考訳(メタデータ) (2023-11-09T18:45:16Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
我々は、強化学習を用いて、近視性(一般的な発話の出力)を回避し、全体的なユーザ満足度を最大化する対話エージェントを開発する。
既存のRLアプローチのほとんどは、単語レベルでエージェントを訓練するので、中規模の語彙であっても、非常に複雑なアクション空間を扱う必要がある。
i)会話履歴の多様な意味を学習できるLMと、(ii)対応する発話を生成できる専門的なLM(または専門家)からなる、新しい専門家言語モデル(MoE-LM)を用いたRLベースのDMを開発する。
論文 参考訳(メタデータ) (2022-05-31T19:00:41Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。